A Multi-Feature Fusion Based on Transfer Learning for Chicken Embryo Eggs Classification

被引:13
|
作者
Huang, Lvwen [1 ,2 ,3 ]
He, Along [1 ]
Zhai, Mengqun [4 ]
Wang, Yuxi [1 ]
Bai, Ruige [1 ]
Nie, Xiaolin [1 ]
机构
[1] NorthWest A&F Univ, Coll Informat Engn, Yangling 712100, Shaanxi, Peoples R China
[2] Minist Agr & Rural Affairs, Key Lab Agr Internet Things, Yangling 712100, Shaanxi, Peoples R China
[3] Shaanxi Key Lab Agr Informat Percept & Intelligen, Yangling 712100, Shaanxi, Peoples R China
[4] NorthWest A&F Univ, Coll Mech & Elect Engn, Yangling 712100, Shaanxi, Peoples R China
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 05期
关键词
Transfer learning; deep feature; SPF; embryo; SURF; HOG; DCNN; agriculture; FERTILE EGGS; DEEP; IDENTIFICATION; MACHINE; VISION;
D O I
10.3390/sym11050606
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The fertility detection of Specific Pathogen Free (SPF) chicken embryo eggs in vaccine preparation is a challenging task due to the high similarity among six kinds of hatching embryos (weak, hemolytic, crack, infected, infertile, and fertile). This paper firstly analyzes two classification difficulties of feature similarity with subtle variations on six kinds of five- to seven-day embryos, and proposes a novel multi-feature fusion based on Deep Convolutional Neural Network (DCNN) architecture in a small dataset. To avoid overfitting, data augmentation is employed to generate enough training images after the Region of Interest (ROI) of original images are cropped. Then, all the augmented ROI images are fed into pretrained AlexNet and GoogLeNet to learn the discriminative deep features by transfer learning, respectively. After the local features of Speeded Up Robust Feature (SURF) and Histogram of Oriented Gradient (HOG) are extracted, the multi-feature fusion with deep features and local features is implemented. Finally, the Support Vector Machine (SVM) is trained with the fused features. The verified experiments show that this proposed method achieves an average classification accuracy rate of 98.4%, and that the proposed transfer learning has superior generalization and better classification performance for small-scale agricultural image samples.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] An Image Classification Method Based On Multi-feature Fusion and Multi-kernel SVM
    Xiang, Zixi
    Lv, Xueqiang
    Zhang, Kai
    2014 SEVENTH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID 2014), VOL 2, 2014,
  • [32] Unknown Traffic Recognition Based on Multi-Feature Fusion and Incremental Learning
    Liu, Junyi
    Wang, Jiarong
    Yan, Tian
    Qi, Fazhi
    Chen, Gang
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [33] Malware Detection Using Contrastive Learning Based on Multi-Feature Fusion
    Guo, Kailu
    Xin, Yang
    Yu, Tianxiang
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 1681 - 1686
  • [34] Seal Recognition and Application Based on Multi-feature Fusion Deep Learning
    Zhang Z.
    Xia S.
    Liu Z.
    Data Analysis and Knowledge Discovery, 2024, 8 (03) : 143 - 155
  • [35] Malicious URL Recognition Based on Multi-feature Fusion and Machine Learning
    Ma, Changyou
    Wu, Aimin
    Ma, Wenzhuo
    Chen, Ke
    Liu, Yun
    Liang, Xiaoning
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 3014 - 3019
  • [36] Defect identification of wind turbine blade based on multi-feature fusion residual network and transfer learning
    Zhu, Jiawei
    Wen, Chuanbo
    Liu, Jihui
    ENERGY SCIENCE & ENGINEERING, 2022, 10 (01) : 219 - 229
  • [37] Hyperspectral Image Classification Based on Dense Pyramidal Convolution and Multi-Feature Fusion
    Zhang, Junsan
    Zhao, Li
    Jiang, Hongzhao
    Shen, Shigen
    Wang, Jian
    Zhang, Peiying
    Zhang, Wei
    Wang, Leiquan
    REMOTE SENSING, 2023, 15 (12)
  • [38] Multilingual Pretrained based Multi-feature Fusion Model for English Text Classification
    Zhang, Ruijuan
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2025, 22 (01) : 133 - 152
  • [39] Point Cloud Classification Based on Offset Attention Mechanism and Multi-Feature Fusion
    Tian S.
    Song L.
    Zhao K.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2024, 52 (01): : 100 - 109
  • [40] Research on Long Text Classification Model Based on Multi-Feature Weighted Fusion
    Yue, Xi
    Zhou, Tao
    He, Lei
    Li, Yuxia
    APPLIED SCIENCES-BASEL, 2022, 12 (13):