Optimization of Carbon Black Polymer Composite Microstructure for Rupture Resistance

被引:18
|
作者
San, Bingbing [1 ,2 ]
Waisman, Haim [2 ]
机构
[1] Hohai Univ, Coll Civil & Transportat Engn, Nanjing 210098, Jiangsu, Peoples R China
[2] Columbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
phase field method; rupture resistance; carbon black polymer composite; microstructure optimization; hyperelasticity; large deformations; TOPOLOGY OPTIMIZATION; DESIGN OPTIMIZATION; GENETIC ALGORITHM; CONTINUUM DAMAGE; FRACTURE; MODEL;
D O I
10.1115/1.4035050
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Optimization of material microstructure is strongly tied with the performance of composite materials at the macroscale and can be used to control desired macroscopic properties. In this paper, we study the optimal location of carbon black (CB) particle inclusions in a natural rubber (NR) matrix with the objective to maximize the rupture resistance of such polymer composites. Hyperelasticity is used to model the rubber matrix and stiff inclusions, and the phase field method is used to model the fracture accounting for large deformation kinematics. A genetic algorithm is employed to solve the inverse problem in which three parameters are proposed as optimization objective, including maximum peak force, maximum deformation at failure-point, and maximum fracture energy at failure-point. Two kinds of optimization variables, continuous and discrete variables, are adopted to describe the location of particles, and several numerical examples are carried out to provide insight into the optimal locations for different objectives.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] The Influence of Carbon Black Content on the Phase Composition and Electric Conductivity of a Polymer Composite
    Zyuzin, A. M.
    Karpeev, A. A.
    Yantsen, N., V
    Naumkin, V. V.
    TECHNICAL PHYSICS LETTERS, 2020, 46 (12) : 1235 - 1237
  • [32] The Influence of Carbon Black Content on the Phase Composition and Electric Conductivity of a Polymer Composite
    A. M. Zyuzin
    A. A. Karpeev
    N. V. Yantsen
    V. V. Naumkin
    Technical Physics Letters, 2020, 46 : 1235 - 1237
  • [33] Physico-mechanical behavior of carbon black-infused polymer composite
    H Shivashankar
    Sangamesh Rajole
    Pavankumar Sondar
    Kevin Amith Mathias
    S M Kulkarni
    Bulletin of Materials Science, 2022, 45
  • [34] Phenomena based dynamic model of carbon black-polymer composite sensors
    Yates, JWT
    Chappell, MJ
    Gardner, JW
    PROCEEDINGS OF THE IEEE SENSORS 2004, VOLS 1-3, 2004, : 1253 - 1256
  • [35] The influence of bending on the performance of flexible carbon black/polymer composite gas sensors
    Kinkeldei, Thomas
    Zysset, Christoph
    Muenzenrieder, Niko
    Troester, Gerhard
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2013, 51 (05) : 329 - 336
  • [36] ESR observation of the microstructure of polymer carbon black composites. Correlation with dielectric properties
    Boulic, F
    Brosseau, C
    Quefellec, P
    LeMest, Y
    Loaec, J
    Beroual, A
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON PROPERTIES AND APPLICATIONS OF DIELECTRIC MATERIALS, VOLS 1 AND 2, 1997, : 66 - 69
  • [37] Absorption-dominant EMI shielding polymer composite foams: Microstructure and geometry optimization
    Ma, Li
    Hamidinejad, Mahdi
    Wei, Linfeng
    Zhao, Biao
    Park, Chul B.
    MATERIALS TODAY PHYSICS, 2023, 30
  • [38] Use of compatible polymer blends to fabricate arrays of carbon black-polymer composite vapor detectors
    Doleman, BJ
    Sanner, RD
    Severin, EJ
    Grubbs, RH
    Lewis, NS
    ANALYTICAL CHEMISTRY, 1998, 70 (13) : 2560 - 2564
  • [39] Use of compatible polymer blends to fabricate arrays of carbon black-polymer composite vapor detectors
    California Inst of Technology, Pasadena, United States
    Anal Chem, 13 ([d]2560-2564):
  • [40] Microstructure-property relation in a liquid crystalline polymer-carbon nanofiber composite
    Rohatgi, A.
    Baucom, J. N.
    Pogue, W. R., III
    Thomas, J. P.
    PROCEEDINGS OF THE ASME MATERIALS DIVISION, 2005, 100 : 545 - 552