Effect of dietary lipid level on growth, lipid metabolism and oxidative status of largemouth bass, Micropterus salmoides

被引:111
|
作者
Guo, Jia-ling [1 ,3 ]
Zhou, Yue-lang [1 ]
Zhao, Hang [1 ]
Chen, Wen-Yan [2 ]
Chen, Yong-Jun [1 ]
Lin, Shi-Mei [1 ]
机构
[1] Southwest Univ, Coll Anim Sci & Technol, Minist Educ, Key Lab Freshwater Fish Reprod & Dev, Chongqing 400715, Peoples R China
[2] Yongchuan Dist Agr Commiss, Chongqing 402160, Peoples R China
[3] Southwest Univ, Coll Anim Sci & Technol, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
M.salmoides; Lipid level; Growth; Lipid metabolism; Antioxidant capacity; BODY-COMPOSITION; FEED-UTILIZATION; NUTRIENT UTILIZATION; FATTY-ACID; GENE-EXPRESSION; BAGRID CATFISH; SILVER BARB; PROTEIN; PERFORMANCE; RATIO;
D O I
10.1016/j.aquaculture.2019.04.007
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
This study was conducted to evaluate the effect of dietary lipid levels on growth, body composition and liver oxidative stress of largemouth bass, Micropterus salmoides. Fish were fed isonitrogenous (crude protein 45%) practical diets with five lipid levels (3.3%, 8.2%, 13.2%, 18.1% and 23.3%, respectively) for 60 days. The results showed that weight gain (WG) and protein efficiency ratio (PER) were all significantly improved by dietary lipid levels up to 18.1% and then levelled off beyond this level. Both feed intake (FI) and feed conversion ratio (FCR) showed a decreasing trend with dietary lipid increased. Body lipid content, liver lipid content, total n-3 and n-6 PUFA content in muscle, and triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) contents in plasma significantly increased with increasing dietary lipid levels. However, body protein content, and HDL-C/TC and HDL-C/LDL-C values significantly reduced. The carnitine palmitoyltransferase I (CPT-1), lipoprtein lipase (LPL), glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK) and fructose-1,6-bisphosphatase (FBPase) activities in liver increased significantly as dietary lipid levels increased, whereas both fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) activities showed the opposite trend. Moreover, higher superoxide dismutase (SOD), catalase (CAT) and oxide synthase (NOS) activities, and nitric oxide (NO) concent in liver were recorded in fish fed diets with 18.1% lipid, while the malondialdehyde (MDA) content in liver increased as dietary lipid levels increased. Results indicated that high dietary lipid level (23.3%) inhibit weight gain and induce oxidative stress, which affect the health status of largemouth bass. Based on WG, a dietary lipid level of 18.42% was optimal for growth performance of juvenile largemouth bass.
引用
收藏
页码:394 / 400
页数:7
相关论文
共 50 条
  • [1] Effect of dietary starch level on growth, metabolism enzyme and oxidative status of juvenile largemouth bass, Micropterus salmoides
    Ma, Hui-Jia
    Mou, Ming-Ming
    Pu, De-Cheng
    Lin, Shi-Mei
    Chen, Yong-Jun
    Luo, Li
    AQUACULTURE, 2019, 498 : 482 - 487
  • [2] Dietary lysophospholipids improves growth performance and hepatic lipid metabolism of largemouth bass(Micropterus salmoides)
    Mingxiao Che
    Ziye Lu
    Liang Liu
    Ning Li
    Lina Ren
    Shuyan Chi
    Animal Nutrition, 2023, (02) : 426 - 434
  • [3] Dietary lysophospholipids improves growth performance and hepatic lipid metabolism of largemouth bass (Micropterus salmoides)
    Che, Mingxiao
    Lu, Ziye
    Liu, Liang
    Li, Ning
    Ren, Lina
    Chi, Shuyan
    ANIMAL NUTRITION, 2023, 13 : 426 - 434
  • [4] Effect of dietary lipid level and protein energy ratio on growth and body composition of largemouth bass Micropterus salmoides
    Bright, LA
    Coyle, SD
    Tidwell, JH
    JOURNAL OF THE WORLD AQUACULTURE SOCIETY, 2005, 36 (01) : 129 - 134
  • [5] Appropriate dietary phenylalanine improved growth, protein metabolism and lipid metabolism, and glycolysis in largemouth bass (Micropterus salmoides)
    Yi, Changguo
    Liang, Hualiang
    Xu, Gangchun
    Zhu, Jian
    Wang, Yongli
    Li, Songlin
    Ren, Mingchun
    Chen, Xiaoru
    FISH PHYSIOLOGY AND BIOCHEMISTRY, 2024, 50 (01) : 349 - 365
  • [6] Appropriate dietary phenylalanine improved growth, protein metabolism and lipid metabolism, and glycolysis in largemouth bass (Micropterus salmoides)
    Changguo Yi
    Hualiang Liang
    Gangchun Xu
    Jian Zhu
    Yongli Wang
    Songlin Li
    Mingchun Ren
    Xiaoru Chen
    Fish Physiology and Biochemistry, 2024, 50 : 349 - 365
  • [7] High dietary lipid level alters the growth, hepatic metabolism enzyme, and anti-oxidative capacity in juvenile largemouth bass Micropterus salmoides
    Yue-Lang Zhou
    Jia-Ling Guo
    Ren-Jun Tang
    Hui-Jia Ma
    Yong-Jun Chen
    Shi-Mei Lin
    Fish Physiology and Biochemistry, 2020, 46 : 125 - 134
  • [8] High dietary lipid level alters the growth, hepatic metabolism enzyme, and anti-oxidative capacity in juvenile largemouth bass Micropterus salmoides
    Zhou, Yue-Lang
    Guo, Jia-Ling
    Tang, Ren-Jun
    Ma, Hui-Jia
    Chen, Yong-Jun
    Lin, Shi-Mei
    FISH PHYSIOLOGY AND BIOCHEMISTRY, 2020, 46 (01) : 125 - 134
  • [9] Dietary Protein and Lipid Requirements for Juvenile Largemouth Bass, Micropterus salmoides
    Huang, Di
    Wu, Yubo
    Lin, Yayun
    Chen, Jianming
    Karrow, Niel
    Ren, Xing
    Wang, Yan
    JOURNAL OF THE WORLD AQUACULTURE SOCIETY, 2017, 48 (05) : 782 - 790
  • [10] Effects of dietary phytosterol on growth, lipid homeostasis and lipidomics of largemouth bass (Micropterus salmoides)
    Jiang, Xiaoxia
    Sun, Fenggang
    Pan, Zhongchao
    Xu, Jia
    Xie, Shiwei
    AQUACULTURE REPORTS, 2024, 35