Scaling Hypothesis for Projected Entangled-Pair States

被引:9
|
作者
Vanhecke, Bram [1 ]
Hasik, Juraj [2 ,3 ]
Verstraete, Frank [1 ]
Vanderstraeten, Laurens [1 ]
机构
[1] Univ Ghent, Dept Phys & Astron, Krijgslaan 281, B-9000 Ghent, Belgium
[2] CNRS, Lab Phys Theor, UMR5152, 118 Route Narbonne, F-31062 Toulouse, France
[3] Univ Toulouse, 118 Route Narbonne, F-31062 Toulouse, France
基金
欧洲研究理事会;
关键词
RENORMALIZATION-GROUP;
D O I
10.1103/PhysRevLett.129.200601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a new paradigm for scaling simulations with projected entangled-pair states (PEPS) for critical strongly correlated systems, allowing for reliable extrapolations of PEPS data with relatively small bond dimensions D. The key ingredient consists of using the effective correlation length xi for inducing a collapse of data points, f(D, chi)=f(xi(D, chi)), for arbitrary values of D and the environment bonddimension chi. As such we circumvent the need for extrapolations in chi and can use many distinct data points for a fixed value of D. Here, we need that the PEPSs have been optimized using a fixed-chi gradient method, which can be achieved using a novel tensor-network algorithm for finding fixed points of 2D transfer matrices, or by using the formalism of backwards differentiation. We test our hypothesis on the critical 3Ddimer model, the 3D classical Ising model, and the 2D quantum Heisenberg model.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Topological Order in the Projected Entangled-Pair States Formalism: Transfer Operator and Boundary Hamiltonians
    Schuch, Norbert
    Poilblanc, Didier
    Cirac, J. Ignacio
    Perez-Garcia, David
    PHYSICAL REVIEW LETTERS, 2013, 111 (09)
  • [22] Improved summations of n-point correlation functions of projected entangled-pair states
    Ponsioen, Boris
    Hasik, Juraj
    Corboz, Philippe
    PHYSICAL REVIEW B, 2023, 108 (19)
  • [23] Characterizing Matrix-Product States and Projected Entangled-Pair States Preparable via Measurement and Feedback
    Zhang, Yifan
    Gopalakrishnan, Sarang
    Styliaris, Georgios
    PRX QUANTUM, 2024, 5 (04):
  • [24] Infinite matrix product states versus infinite projected entangled-pair states on the cylinder: A comparative study
    Iregui, Juan Osorio
    Troyer, Matthias
    Corboz, Philippe
    PHYSICAL REVIEW B, 2017, 96 (11)
  • [25] Simulation of strongly correlated fermions in two spatial dimensions with fermionic projected entangled-pair states
    Corboz, Philippe
    Orus, Roman
    Bauer, Bela
    Vidal, Guifre
    PHYSICAL REVIEW B, 2010, 81 (16):
  • [26] Stripes in the two-dimensional t-J model with infinite projected entangled-pair states
    Corboz, Philippe
    White, Steven R.
    Vidal, Guifre
    Troyer, Matthias
    PHYSICAL REVIEW B, 2011, 84 (04)
  • [27] Implementing global Abelian symmetries in projected entangled-pair state algorithms
    Bauer, B.
    Corboz, P.
    Orus, R.
    Troyer, M.
    PHYSICAL REVIEW B, 2011, 83 (12):
  • [28] General-Purpose Quantum Circuit Simulator with Projected Entangled-Pair States and the Quantum Supremacy Frontier
    Guo, Chu
    Liu, Yong
    Xiong, Min
    Xue, Shichuan
    Fu, Xiang
    Huang, Anqi
    Qiang, Xiaogang
    Xu, Ping
    Liu, Junhua
    Zheng, Shenggen
    Huang, He-Liang
    Deng, Mingtang
    Poletti, Dario
    Bao, Wan-Su
    Wu, Junjie
    PHYSICAL REVIEW LETTERS, 2019, 123 (19)
  • [29] Symmetric projected entangled-pair states analysis of a phase transition in coupled spin-21 ladders
    Hasik, Juraj
    Mbeng, Glen Bigan
    Capponi, Sylvain
    Becca, Federico
    Laeuchli, Andreas M.
    PHYSICAL REVIEW B, 2022, 106 (12)
  • [30] Fermionic projected entangled pair states
    Kraus, Christina V.
    Schuch, Norbert
    Verstraete, Frank
    Cirac, J. Ignacio
    PHYSICAL REVIEW A, 2010, 81 (05):