A Note on the Maximum Number of Zeros of r(z) - (z)over-bar

被引:0
|
作者
Luce, Robert [1 ]
Sete, Olivier [1 ]
Liesen, Joerg [1 ]
机构
[1] Tech Univ Berlin, D-10623 Berlin, Germany
关键词
Complex valued harmonic function; Rational function; Zeros of rational harmonic functions;
D O I
10.1007/s40315-015-0110-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An important theorem of Khavinson and Neumann (Proc. Am. Math. Soc. 134: 1077-1085, 2006) states that the complex harmonic function r(z)-(z) over bar, where r is a rational function of degree n >= 2, has at most 5(n-1) zeros. In this note, we resolve a slight inaccuracy in their proof and in addition we show that for certain functions of the form r (z)-(z) over bar no more than 5(n-1)-1 zeros can occur. Moreover, we show that r (z)-(z) over bar is regular, if it has the maximal number of zeros.
引用
收藏
页码:439 / 448
页数:10
相关论文
共 50 条
  • [22] A study of charm hadron production in Z(0)->c(c)over-bar and Z(0)->b(b)over-bar decays at LEP
    Alexander, G
    Allison, J
    Altekamp, N
    Ametewee, K
    Anderson, KJ
    Anderson, S
    Arcelli, S
    Asai, S
    Axen, D
    Azuelos, G
    Ball, AH
    Barberio, E
    Barlow, RJ
    Bartoldus, R
    Batley, JR
    Beaudoin, G
    Bechtluft, J
    Beeston, C
    Behnke, T
    Bell, AN
    Bell, KW
    Bella, G
    Bentvelsen, S
    Berlich, P
    Bethke, S
    Biebel, O
    Blobel, V
    Bloodworth, IJ
    Bloomer, JE
    Bock, P
    Bosch, HM
    Boutemeur, M
    Bouwens, BT
    Braibant, S
    Brown, RM
    Burckhart, HJ
    Burgard, C
    Burgin, R
    Capiluppi, P
    Carnegie, RK
    Carter, AA
    Carter, JR
    Chang, CY
    Charlesworth, C
    Charlton, DG
    Chrisman, D
    Chu, SL
    Clarke, PEL
    Cohen, I
    Conboy, JE
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1996, 72 (01): : 1 - 16
  • [23] Z->b(b)over-bar in U(1)(R) symmetric supersymmetry
    Simmons, EH
    Su, YM
    PHYSICAL REVIEW D, 1996, 54 (05): : 3580 - 3586
  • [24] Operational formulae for the complex Hermite polynomials Hp,q(z,(z)over-bar
    Ghanmi, Allal
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (11) : 884 - 895
  • [25] The dynamical models and the Z → b(b)over-bar asymmetry
    Yue, CX
    Dai, YB
    Li, H
    MODERN PHYSICS LETTERS A, 2002, 17 (05) : 261 - 268
  • [26] An equation involving Z*(n) and (SL)over-bar(n)
    Xiao, Mingdong
    RESEARCH ON NUMBER THEORY AND SMARANDACHE NOTIONS, 2010, : 97 - 99
  • [27] DYNAMICS OF FLUID IN OSCILLATORY FLOW: THE (Z)over-bar COMPONENT
    Lee, V. C-C.
    Abakr, Y. A.
    Woo, K-C.
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2015, 10 (10): : 1361 - 1371
  • [28] A REMARK ON THE Z(0)-]B(B)OVER-BAR WIDTH
    SCHILDKNECHT, D
    PHYSICS LETTERS B, 1995, 355 (1-2) : 325 - 328
  • [29] Measurement of the ratio of differential cross sections σ(p(p)over-bar → Z + b jet)/σ(p(p)over-bar → Z + jet) in p(p)over-bar collisions at √s = 1.96 TeV
    Abazov, V. M.
    Abbott, B.
    Acharya, B. S.
    Adams, M.
    Adams, T.
    Alexeev, G. D.
    Alkhazov, G.
    Alton, A.
    Askew, A.
    Atkins, S.
    Augsten, K.
    Avila, C.
    Badaud, F.
    Bagby, L.
    Baldin, B.
    Bandurin, D. V.
    Banerjee, S.
    Barberis, E.
    Baringer, P.
    Bartlett, J. F.
    Bassler, U.
    Bazterra, V.
    Bean, A.
    Begalli, M.
    Bellantoni, L.
    Beri, S. B.
    Bernardi, G.
    Bernhard, R.
    Bertram, I.
    Besancon, M.
    Beuselinck, R.
    Bhat, P. C.
    Bhatia, S.
    Bhatnagar, V.
    Blazey, G.
    Blessing, S.
    Bloom, K.
    Boehnlein, A.
    Boline, D.
    Boos, E. E.
    Borissov, G.
    Brandt, A.
    Brandt, O.
    Brock, R.
    Bross, A.
    Brown, D.
    Brown, J.
    Bu, X. B.
    Buehler, M.
    Buescher, V.
    PHYSICAL REVIEW D, 2013, 87 (09):
  • [30] Semileptonic Λb→Λν(ν)over-bar decay in the leptophobic Z′ model
    Sirvanli, B. B.
    MODERN PHYSICS LETTERS A, 2008, 23 (05) : 347 - 358