A Note on the Maximum Number of Zeros of r(z) - (z)over-bar

被引:0
|
作者
Luce, Robert [1 ]
Sete, Olivier [1 ]
Liesen, Joerg [1 ]
机构
[1] Tech Univ Berlin, D-10623 Berlin, Germany
关键词
Complex valued harmonic function; Rational function; Zeros of rational harmonic functions;
D O I
10.1007/s40315-015-0110-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An important theorem of Khavinson and Neumann (Proc. Am. Math. Soc. 134: 1077-1085, 2006) states that the complex harmonic function r(z)-(z) over bar, where r is a rational function of degree n >= 2, has at most 5(n-1) zeros. In this note, we resolve a slight inaccuracy in their proof and in addition we show that for certain functions of the form r (z)-(z) over bar no more than 5(n-1)-1 zeros can occur. Moreover, we show that r (z)-(z) over bar is regular, if it has the maximal number of zeros.
引用
收藏
页码:439 / 448
页数:10
相关论文
共 50 条
  • [1] The Maximum Number of Zeros of r(z) - (z)over-bar Revisited
    Liesen, Joerg
    Zur, Jan
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2018, 18 (03) : 463 - 472
  • [2] The Z → c(c)over-bar → γγ*, Z → b(b)over-bar → γγ* triangle diagrams and the Z → γψ, Z → γυ decays
    Achasov, N. N.
    PHYSICS OF ATOMIC NUCLEI, 2011, 74 (03) : 437 - 445
  • [3] π±, K±, p and (p)over-bar production in Z0→q(q)over-bar, Z0→b(b)over-bar, Z0→u(u)over-bar,d(d)over-bar,s(s)over-bar
    Abreu, P
    Adam, W
    Adye, T
    Adzic, P
    Ajinenko, I
    Alekseev, GD
    Alemany, R
    Allport, PP
    Almehed, S
    Amaldi, U
    Amato, S
    Anassontzis, EG
    Andersson, P
    Andreazza, A
    Antilogus, P
    Apel, WD
    Arnoud, Y
    Asman, B
    Augustin, JE
    Augustinus, A
    Baillon, P
    Bambade, P
    Barao, F
    Barbiellini, G
    Barbier, R
    Bardin, DY
    Barker, G
    Baroncelli, A
    Battaglia, M
    Baubillier, M
    Becks, KH
    Begalli, M
    Beilliere, P
    Belokopytov, Y
    Belous, K
    Benvenuti, AC
    Berat, C
    Berggren, M
    Bertini, D
    Bertrand, D
    Besancon, M
    Bianchi, F
    Bigi, M
    Bilenky, MS
    Bizouard, MA
    Bloch, D
    Bonesini, M
    Bonivento, W
    Boonekamp, M
    Booth, PSL
    EUROPEAN PHYSICAL JOURNAL C, 1998, 5 (04): : 585 - 620
  • [4] On the Milnor fibration for f (z) (g)over-bar(z)
    Oka, Mutsuo
    EUROPEAN JOURNAL OF MATHEMATICS, 2020, 6 (03) : 998 - 1019
  • [5] Z->b(b)over-bar and Z->c(c)over-bar as tests of the standard model
    Samuel, MA
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1997, 36 (01) : 119 - 123
  • [6] On the Milnor fibration for f(z)(g)over-bar(z) II
    Oka, Mutsuo
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2021, 73 (02) : 649 - 669
  • [7] Approximating (z)over-bar in the Bergman Space
    Fleeman, Matthew
    Khavinson, Dmitry
    RECENT PROGRESS ON OPERATOR THEORY AND APPROXIMATION IN SPACES OF ANALYTIC FUNCTIONS, 2016, 679 : 79 - 90
  • [8] (Spec Z)over-bar AND THE GROMOV NORM
    Connes, Alain
    Consani, Caterina
    THEORY AND APPLICATIONS OF CATEGORIES, 2020, 35 : 155 - 178
  • [9] Estimate of the branching ratio for Z → ν(ν)over-barγγ
    Dicus, Duane A.
    Repko, Wayne W.
    PHYSICAL REVIEW D, 2012, 86 (09):
  • [10] Comparison of H → l(l)over-barγ and H →γZ,Z → l(l)over-bar including the ATLAS cuts
    Dicus, Duane A.
    Kao, Chung
    Repko, Wayne W.
    PHYSICAL REVIEW D, 2014, 89 (03)