PPIRank - an advanced method for ranking protein-protein interations in TAP/MS data

被引:4
|
作者
Sun, Xiaoyun [1 ,2 ]
Hong, Pengyu [1 ]
Kulkarni, Meghana [1 ,2 ]
Kwon, Young [1 ,2 ]
Perrimon, Norbert [2 ]
机构
[1] Brandeis Univ, Dept Comp Sci, Waltham, MA 02454 USA
[2] Harvard Univ, Sch Med, Dept Genet, Boston, MA USA
来源
PROTEOME SCIENCE | 2013年 / 11卷
关键词
PURIFICATION-MASS SPECTROMETRY; INTERACTION NETWORKS; SYSTEMATIC ANALYSIS; COMPLEXES; PROTEOMICS; LANDSCAPE;
D O I
10.1186/1477-5956-11-S1-S16
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Tandem affinity purification coupled with mass-spectrometry (TAP/MS) analysis is a popular method for the identification of novel endogenous protein-protein interactions (PPIs) in large-scale. Computational analysis of TAP/MS data is a critical step, particularly for high-throughput datasets, yet it remains challenging due to the noisy nature of TAP/MS data. Results: We investigated several major TAP/MS data analysis methods for identifying PPIs, and developed an advanced method, which incorporates an improved statistical method to filter out false positives from the negative controls. Our method is named PPIRank that stands for PPI ranking in TAP/MS data. We compared PPIRank with several other existing methods in analyzing two pathway-specific TAP/MS PPI datasets from Drosophila. Conclusion: Experimental results show that PPIRank is more capable than other approaches in terms of identifying known interactions collected in the BioGRID PPI database. Specifically, PPIRank is able to capture more true interactions and simultaneously less false positives in both Insulin and Hippo pathways of Drosophila Melanogaster.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] PPIRank - an advanced method for ranking protein-protein interations in TAP/MS data
    Xiaoyun Sun
    Pengyu Hong
    Meghana Kulkarni
    Young Kwon
    Norbert Perrimon
    Proteome Science, 11
  • [2] Domain combination based protein-protein interaction possibility ranking method
    Han, DS
    Kim, HS
    Jang, WH
    Lee, SD
    BIBE 2004: FOURTH IEEE SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING, PROCEEDINGS, 2004, : 434 - 441
  • [3] Probabilistic prediction and ranking of human protein-protein interactions
    Scott, Michelle S.
    Barton, Geoffrey J.
    BMC BIOINFORMATICS, 2007, 8 (1)
  • [4] Probabilistic prediction and ranking of human protein-protein interactions
    Michelle S Scott
    Geoffrey J Barton
    BMC Bioinformatics, 8
  • [5] DOCKSCORE: a webserver for ranking protein-protein docked poses
    Malhotra, Sony
    Mathew, Oommen K.
    Sowdhamini, Ramanathan
    BMC BIOINFORMATICS, 2015, 16
  • [6] DOCKSCORE: a webserver for ranking protein-protein docked poses
    Sony Malhotra
    Oommen K Mathew
    Ramanathan Sowdhamini
    BMC Bioinformatics, 16
  • [7] A Method of Integrating Spatial Proteomics and Protein-Protein Interaction Network Data
    Squires, Steven
    Ewing, Rob
    Prugel-Bennett, Adam
    Niranjan, Mahesan
    NEURAL INFORMATION PROCESSING, ICONIP 2017, PT V, 2017, 10638 : 782 - 790
  • [8] Mining protein-protein interaction data
    Haasl, Ryan J.
    Fang, Jianwen
    CURRENT BIOINFORMATICS, 2006, 1 (02) : 197 - 205
  • [9] METHOD TO DETECT PROTEIN-PROTEIN INTERACTIONS
    BACKMAN, L
    SHANBAG, V
    JOHANSSON, G
    BIOCHEMICAL SOCIETY TRANSACTIONS, 1977, 5 (03) : 748 - 750
  • [10] METHOD FOR OBSERVING PROTEIN-PROTEIN INTERACTION
    YAGISAWA, S
    JOURNAL OF BIOCHEMISTRY, 1975, 77 (03): : 605 - 616