Causal influence in linear Langevin networks without feedback

被引:2
|
作者
Auconi, Andrea [1 ,2 ]
Giansanti, Andrea [2 ,3 ]
Klipp, Edda [1 ]
机构
[1] Humboldt Univ, Theoret Biophys, Invalidenstr 42, D-10115 Berlin, Germany
[2] Sapienza Univ Roma, Dipartimento Fis, Rome, Italy
[3] INFN, Sez Roma 1, Rome, Italy
关键词
D O I
10.1103/PhysRevE.95.042315
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The intuition of causation is so fundamental that almost every research study in life sciences refers to this concept. However, a widely accepted formal definition of causal influence between observables is still missing. In the framework of linear Langevin networks without feedback (linear response models) we propose a measure of causal influence based on a new decomposition of information flows over time. We discuss its main properties and we compare it with other information measures like the transfer entropy. We are currently unable to extend the definition of causal influence to systems with a general feedback structure and nonlinearities.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Influence minimization in linear threshold networks
    Yang, Lan
    Li, Zhiwu
    Giua, Alessandro
    AUTOMATICA, 2019, 100 : 10 - 16
  • [22] Langevin Monte Carlo without smoothness
    Chatterji, Niladri S.
    Diakonikolas, Jelena
    Jordan, Michael I.
    Bartlett, Peter L.
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 1716 - 1725
  • [23] Revising regulatory networks: from expression data to linear causal models
    Bay, SD
    Shrager, J
    Pohorille, A
    Langley, P
    JOURNAL OF BIOMEDICAL INFORMATICS, 2002, 35 (5-6) : 289 - 297
  • [24] Linear Langevin particle in Gaussian noise
    Grigorenko, AN
    PHYSICS LETTERS A, 2001, 291 (2-3) : 92 - 94
  • [25] Causal exclusion without causal sufficiency
    Vaassen, Bram
    SYNTHESE, 2021, 198 (11) : 10341 - 10353
  • [26] Causal exclusion without causal sufficiency
    Bram Vaassen
    Synthese, 2021, 198 : 10341 - 10353
  • [27] Using Embeddings for Causal Estimation of Peer Influence in Social Networks
    Cristali, Irina
    Veitch, Victor
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [28] INFLUENCE ESTIMATION ON SOCIAL MEDIA NETWORKS USING CAUSAL INFERENCE
    Smith, Steven T.
    Kao, Edward K.
    Shah, Danelle C.
    Simek, Olga
    Rubin, Donald B.
    2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 328 - 332
  • [29] Achievable Rates for Discrete Memoryless Multicast Networks With and Without Feedback
    Wu, Youlong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (04) : 2321 - 2332
  • [30] Entropy production in linear Langevin systems
    Landi, Gabriel T.
    Tome, Tania
    de Oliveira, Mario J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (39)