Cryogenic-temperature-induced transition from shear to dilatational failure in metallic glasses

被引:53
|
作者
Jiang, M. Q. [1 ,2 ]
Wilde, G. [2 ]
Chen, J. H. [1 ]
Qu, C. B. [3 ]
Fu, S. Y. [3 ]
Jiang, F. [4 ]
Dai, L. H. [1 ]
机构
[1] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
[2] Univ Munster, Inst Mat Phys, D-48149 Munster, Germany
[3] Chinese Acad Sci, Tech Inst Phys & Chem, Beijing 100190, Peoples R China
[4] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
关键词
Metallic glass; Shear band; Shear transformation zone; Dilatation; Cryogenic temperature; MEDIUM-RANGE ORDER; PRESSURE SENSITIVITY; HYDROSTATIC-PRESSURE; INTRINSIC PLASTICITY; FRACTURE MECHANISMS; FLOW; DEFORMATION; BEHAVIOR; MODEL; RELAXATION;
D O I
10.1016/j.actamat.2014.05.052
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
At temperatures well below the glass transition temperature, the failure of metallic glasses is generally induced by shear banding, which is a result of the self-organized shear transformation zones (STZs). Here, we demonstrate that, upon cooling down to liquid helium temperature (4.2 K), a Zr-based bulk metallic glass under quasi-static uniaxial tension can fracture via cavitation, rather than by shear banding, showing a transition from shear- to dilatation-dominated failure. This transition is supported by the breakdown of low-temperature strengthening of materials, as well as the changes in the macroscopic failure mode from shear to tension and in the microscopic fracture morphology from vein patterns to fine dimples or nanoscale periodic corrugations. According to the Mohr-Coulomb criterion, it is revealed that the capability of this glass to dilatation is enhanced with decreasing temperature, indicating the temperature-dependent normal stress sensitivity of failure. Our result implies that the shear-dominated STZs will convert into dilatation-dominated operations at very low temperatures. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:248 / 257
页数:10
相关论文
共 50 条
  • [21] Temperature-induced anomalous brittle-to-ductile transition of bulk metallic glasses
    Pan, D.
    Guo, H.
    Zhang, W.
    Inoue, A.
    Chen, M. W.
    APPLIED PHYSICS LETTERS, 2011, 99 (24)
  • [22] GLASS TEMPERATURE AND SOLID - LIQUID TRANSITION OF METALLIC GLASSES
    KNELLER, E
    DU, C
    DUMPELMANN, D
    FROCHTE, B
    KHAN, YN
    SOSTARICH, M
    ZEITSCHRIFT FUR METALLKUNDE, 1993, 84 (08): : 574 - 579
  • [23] Concentration dependence of the transition temperature in metallic spin glasses
    Gracià, RS
    Nieuwenhuizen, TM
    Lerner, IV
    EUROPHYSICS LETTERS, 2004, 66 (03): : 419 - 422
  • [24] GLASS-TRANSITION TEMPERATURE IN SOME METALLIC GLASSES
    HIRATA, T
    SCRIPTA METALLURGICA, 1979, 13 (07): : 555 - 559
  • [25] Effect of temperature on shear bands and bending plasticity of metallic glasses
    Meduri, C.
    Hasan, M.
    Adam, S.
    Kumar, G.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 732 : 922 - 927
  • [26] On Temperature Rise Within the Shear Bands in Bulk Metallic Glasses
    Bazlov, A. I.
    Churyumov, A. Yu.
    Buchet, M.
    Louzguine-Luzgin, D. V.
    METALS AND MATERIALS INTERNATIONAL, 2018, 24 (03) : 481 - 488
  • [27] On Temperature Rise Within the Shear Bands in Bulk Metallic Glasses
    A. I. Bazlov
    A. Yu. Churyumov
    M. Buchet
    D. V. Louzguine-Luzgin
    Metals and Materials International, 2018, 24 : 481 - 488
  • [28] Multi-step shear banding for bulk metallic glasses at ambient and cryogenic temperatures
    Qiao, J. W.
    Jia, H. L.
    Zhang, Y.
    Law, P. K.
    Li, L. F.
    MATERIALS CHEMISTRY AND PHYSICS, 2012, 136 (01) : 75 - 79
  • [29] Shear modulus and compliance in the range of the dynamic glass transition for metallic glasses
    K. Schröter
    G. Wilde
    R. Willnecker
    M. Weiss
    K. Samwer
    E. Donth
    The European Physical Journal B - Condensed Matter and Complex Systems, 1998, 5 : 1 - 5
  • [30] Correlation between glass transition temperature and melting temperature in metallic glasses
    Cao, C. R.
    Ding, D. W.
    Zhao, D. Q.
    Axinte, E.
    Bai, H. Y.
    Wang, W. H.
    MATERIALS & DESIGN, 2014, 60 : 576 - 579