Superlevel sets and nodal extrema of Laplace-Beltrami eigenfunctions

被引:1
|
作者
Poliquin, Guillaume [1 ]
机构
[1] Univ Montreal, Dept Math & Stat, CP 6128,Succursale Ctr Ville, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Laplacian; Riemannian manifold; eigenfunction; nodal domain; bathtub principle; P-LAPLACIAN; FREQUENCY;
D O I
10.4171/JST/157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We estimate the volume of superlevel sets of Laplace-Beltrami eigenfunctions on a compact Riemannian manifold. The proof uses the Green's function representation and the Bathtub principle. As an application, we obtain upper bounds on the distribution of the extrema of a Laplace-Beltrami eigenfunction over its nodal domains. Such bounds have been previously proved by L. Polterovich and M. Sodin in the case of compact surfaces. Our techniques allow to generalize these results to arbitrary dimensions. We also discuss a different approach to the problem based on reverse Holder inequalities due to G. Chiti.
引用
收藏
页码:111 / 136
页数:26
相关论文
共 50 条
  • [21] Metrics of the Laplace-Beltrami Eigenfunctions for 2D Shape Matching
    Isaacs, Jason C.
    Roberts, Rodney G.
    2011 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2011, : 3347 - 3352
  • [22] Laplace-Beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis
    Reuter, Martin
    Wolter, Franz-Erich
    Shenton, Martha
    Niethammer, Marc
    COMPUTER-AIDED DESIGN, 2009, 41 (10) : 739 - 755
  • [23] Spherical Parameterization for Genus Zero Surfaces Using Laplace-Beltrami Eigenfunctions
    Lefevre, Julien
    Auzias, Guillaume
    GEOMETRIC SCIENCE OF INFORMATION, GSI 2015, 2015, 9389 : 121 - 129
  • [24] Hierarchical Shape Segmentation and Registration via Topological Features of Laplace-Beltrami Eigenfunctions
    Martin Reuter
    International Journal of Computer Vision, 2010, 89 : 287 - 308
  • [25] A LOWER BOUND ON LOCAL ENERGY OF PARTIAL SUM OF EIGENFUNCTIONS FOR LAPLACE-BELTRAMI OPERATORS
    Lu, Qi
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2013, 19 (01) : 255 - 273
  • [26] Point cloud surface segmentation based on volumetric eigenfunctions of the Laplace-Beltrami operator
    Li, Xinge
    Zhang, Yongjie Jessica
    Yang, Xuyang
    Xu, Haibo
    Xu, Guoliang
    COMPUTER AIDED GEOMETRIC DESIGN, 2019, 71 : 157 - 175
  • [27] Hierarchical Shape Segmentation and Registration via Topological Features of Laplace-Beltrami Eigenfunctions
    Reuter, Martin
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 89 (2-3) : 287 - 308
  • [28] Three-dimensional salient point detection based on the Laplace-Beltrami eigenfunctions
    Niu, Dongmei
    Guo, Han
    Zhao, Xiuyang
    Zhang, Caiming
    VISUAL COMPUTER, 2020, 36 (04): : 767 - 784
  • [29] Characterization of eigenfunctions of the Laplace-Beltrami operator through heat propagation in small time
    Naik, Muna
    Sarkar, Rudra P.
    MONATSHEFTE FUR MATHEMATIK, 2020, 192 (04): : 883 - 903
  • [30] Simplification of the Laplace-Beltrami operator
    Hashiguchi, H
    Nakagawa, S
    Niki, N
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2000, 51 (05) : 489 - 496