Overview of Deep Learning-Based CSI Feedback in Massive MIMO Systems

被引:98
|
作者
Guo, Jiajia [1 ]
Wen, Chao-Kai [2 ]
Jin, Shi [1 ]
Li, Geoffrey Ye [3 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Jiangsu, Peoples R China
[2] Natl Sun Yat Sen Univ, Inst Commun Engn, Kaohsiung 80424, Taiwan
[3] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
基金
中国国家自然科学基金;
关键词
Decoding; Image reconstruction; Image coding; Downlink; Massive MIMO; 3GPP; Indexes; CSI feedback; massive MIMO; deep learning; overview; NEURAL-NETWORKS; CHANNEL ESTIMATION; COMPRESSION; MODEL; FRAMEWORK; OPTIMIZATION; RECIPROCITY; ALGORITHM; RECOVERY; DESIGN;
D O I
10.1109/TCOMM.2022.3217777
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Many performance gains achieved by massive multiple-input and multiple-output depend on the accuracy of the downlink channel state information (CSI) at the transmitter (base station), which is usually obtained by estimating at the receiver (user equipment) and feeding back to the transmitter. The overhead of CSI feedback occupies substantial uplink bandwidth resources, especially when the number of transmit antennas is large. Deep learning (DL)-based CSI feedback refers to CSI compression and reconstruction by a DL-based autoencoder and can greatly reduce feedback overhead. In this paper, a comprehensive overview of state-of-the-art research on this topic is provided, beginning with basic DL concepts widely used in CSI feedback and then categorizing and describing some existing DL-based feedback works. The focus is on novel neural network architectures and utilization of communication expert knowledge to improve CSI feedback accuracy. Works on joint design of CSI feedback with other communication modules are also introduced, and some practical issues, including bitstream generation, multirate feedback, imperfect feedback, NN complexity, training dataset collection, online training, and standardization effect, are discussed. At the end of the paper, some challenges and potential research directions associated with DL-based CSI feedback in future wireless communication systems are identified.
引用
收藏
页码:8017 / 8045
页数:29
相关论文
共 50 条
  • [21] Deep Learning-Based CSI Feedback for Beamforming in Single- and Multi-Cell Massive MIMO Systems
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (07) : 1872 - 1884
  • [22] A Unified Deep Learning Method for CSI Feedback in Massive MIMO Systems
    GAO Zhengguang
    LI Lun
    WU Hao
    TU Xuezhen
    HAN Bingtao
    ZTE Communications, 2022, 20 (04) : 110 - 115
  • [23] A Novel Compression CSI Feedback based on Deep Learning for FDD Massive MIMO Systems
    Wang, Yuting
    Zhang, Yibin
    Sun, Jinlong
    Gui, Guan
    Ohtsuki, Tomoaki
    Adachi, Fumiyuki
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2021,
  • [24] Vector Quantization for Deep-Learning-Based CSI Feedback in Massive MIMO Systems
    Shin, Junyong
    Kang, Yujin
    Jeon, Yo-Seb
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (09) : 2382 - 2386
  • [25] Deep Learning-Based CSI Feedback Approach for Time-Varying Massive MIMO Channels
    Wang, Tianqi
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (02) : 416 - 419
  • [26] Deep Learning-based Implicit CSI Feedback for Time-varying Massive MIMO Channels
    Jiang, Chengyong
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Hou, Xiaolin
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4955 - 4960
  • [27] Deep Learning-Based Cooperative CSI Feedback via Multiple Receiving Antennas in Massive MIMO
    Liang, Xin
    Shen, Jinghan
    Chang, Haoran
    Gu, Xinyu
    Zhang, Lin
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 1373 - 1378
  • [28] Quantization Adaptor for Bit-Level Deep Learning-Based Massive MIMO CSI Feedback
    Zhang, Xudong
    Lu, Zhilin
    Zeng, Rui
    Wang, Jintao
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (04) : 5443 - 5453
  • [29] A Manifold Learning-Based CSI Feedback Framework for FDD Massive MIMO
    Cao, Yandi
    Yin, Haifan
    Qin, Ziao
    Li, Weidong
    Wu, Weimin
    Debbah, Merouane
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2025, 73 (03) : 1833 - 1846
  • [30] CSI feedback algorithm based on deep unfolding for massive MIMO systems
    Liao, Yong
    Cheng, Gang
    Li, Yujie
    Tongxin Xuebao/Journal on Communications, 2022, 43 (12): : 77 - 88