Criteria for the importance of multi-scale interactions in turbulent transport simulations

被引:20
|
作者
Creely, A. J. [1 ]
Rodriguez-Fernandez, P. [1 ]
Conway, G. D. [2 ]
Freethy, S. J. [1 ,2 ]
Howard, N. T. [1 ]
White, A. E. [1 ]
机构
[1] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[2] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
关键词
turbulence; validation; multi-scale; perturbative diffusivity; temperature fluctuations; HEAT PULSE-PROPAGATION; ASDEX UPGRADE; PLASMA;
D O I
10.1088/1361-6587/ab24ae
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Turbulent transport simulations have been used to develop criteria that indicate when multi-scale turbulent phenomena are important in tokamak plasmas. Twelve experimental plasma discharges from the Alcator C-Mod and ASDEX Upgrade tokamaks are compared to ion- and multi-scale simulations with the Trapped Gyro-Landau Fluid (TGLF) turbulence code. Multi-scale TGLF agrees with all available validation constraints (ion heat flux, electron heat flux, electron temperature fluctuations, and electron perturbative thermal diffusivity) within uncertainty for all cases analyzed. Ion-scale TGLF agrees in only some cases. Two criteria based on the ratios of normalized linear growth rates are able to distinguish cases in which ion-scale simulations are sufficient from cases for which multi-scale simulations are necessary. The form of these criteria reveal the key role of zonal flow mixing in moderating multi-scale effects.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Using GPU for Multi-agent Multi-scale Simulations
    Laville, G.
    Mazouzi, K.
    Lang, C.
    Marilleau, N.
    Philippe, L.
    DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, 2012, 151 : 197 - +
  • [32] Probing the effects of hydrogen on the materials used for large-scale transport of hydrogen through multi-scale simulations
    Cheng, Guang
    Wang, Xiaoli
    Chen, Kaiyuan
    Zhang, Yang
    Venkatesh, T. A.
    Wang, Xiaolin
    Li, Zunzhao
    Yang, Jing
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 182
  • [33] Multi-scale interactions in Dictyostelium discoideum aggregation
    Dixon, James A.
    Kelty-Stephen, Damian G.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (24) : 6470 - 6483
  • [34] Multi-scale interactions in a compressible boundary layer
    Agostini, Lionel
    Leschziner, Michael
    Poggie, Jonathan
    Bisek, Nicholas J.
    Gaitonde, Datta
    JOURNAL OF TURBULENCE, 2017, 18 (08): : 760 - 780
  • [35] Experimental investigation and gyrokinetic simulations of multi-scale electron heat transport in JET, AUG, TCV
    Mariani, A.
    Bonanomi, N.
    Mantica, P.
    Angioni, C.
    Gorler, T.
    Sauter, O.
    Staebler, G. M.
    NUCLEAR FUSION, 2021, 61 (11)
  • [36] Multi-scale flow interactions in complex terrain
    Costigan, KR
    Wintercamp, JL
    Langley, DL
    Bossert, JE
    10TH CONFERENCE ON MOUNTAIN METEOROLOGY, 2002, : 105 - 108
  • [37] A multi-scale investigation of alcohol and biomembrane interactions
    Dickey, A
    Faller, R
    BIOPHYSICAL JOURNAL, 2005, 88 (01) : 419A - 419A
  • [38] Interactions of multi-scale heterogeneity in the lithosphere: Australia
    Kennett, B. L. N.
    Yoshizawa, K.
    Furumura, T.
    TECTONOPHYSICS, 2017, 717 : 193 - 213
  • [39] The multi-scale attribute of transport and reaction systems
    Guo, MS
    Li, JH
    PROGRESS IN NATURAL SCIENCE, 2001, 11 (02) : 81 - 86
  • [40] Multi-Scale Microfluidics for Transport in Shale Fabric
    Ling, Bowen
    Khan, Hasan J.
    Druhan, Jennifer L.
    Battiato, Ilenia
    ENERGIES, 2021, 14 (01)