Optimizing Laboratory Investigations of Saline Intrusion by Incorporating Machine Learning Techniques

被引:10
|
作者
Etsias, Georgios [1 ]
Hamill, Gerard A. [1 ]
Benner, Eric M. [1 ]
Aguila, Jesus F. [1 ]
McDonnell, Mark C. [1 ]
Flynn, Raymond [1 ]
Ahmed, Ashraf A. [2 ]
机构
[1] Queens Univ Belfast, Sch Nat & Built Environm, Belfast BT9 5AG, Antrim, North Ireland
[2] Brunel Univ, Coll Engn Design & Phys Sci, London UB8 3PH, England
基金
英国工程与自然科学研究理事会;
关键词
saltwater intrusion; sandbox; artificial neural networks; image analysis; classification; regression; FRESH-WATER LENSES; AUTOMATED IMAGE-ANALYSIS; VARIABLE-DENSITY FLOW; SALTWATER INTRUSION; SEAWATER INTRUSION; COASTAL AQUIFERS; CONTAMINANT TRANSPORT; AGE-STRATIFICATION; REACTIVE TRANSPORT; GROUNDWATER-FLOW;
D O I
10.3390/w12112996
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Deriving saltwater concentrations from the light intensity values of dyed saline solutions is a long-established image processing practice in laboratory scale investigations of saline intrusion. The current paper presents a novel methodology that employs the predictive ability of machine learning algorithms in order to determine saltwater concentration fields. The proposed approach consists of three distinct parts, image pre-processing, porous medium classification (glass bead structure recognition) and saltwater field generation (regression). It minimizes the need for aquifer-specific calibrations, significantly shortening the experimental procedure by up to 50% of the time required. A series of typical saline intrusion experiments were conducted in homogeneous and heterogeneous aquifers, consisting of glass beads of varying sizes, to recreate the necessary laboratory data. An innovative method of distinguishing and filtering out the common experimental error introduced by both backlighting and the optical irregularities of the glass bead medium was formulated. This enabled the acquisition of quality predictions by classical, easy-to-use machine learning techniques, such as feedforward Artificial Neural Networks, using a limited amount of training data, proving the applicability of the procedure. The new process was benchmarked against a traditional regression algorithm. A series of variables were utilized to quantify the variance between the results generated by the two procedures. No compromise was found to the quality of the derived concentration fields and it was established that the proposed image processing technique is robust when applied to homogeneous and heterogeneous domains alike, outperforming the classical approach in all test cases. Moreover, the method minimized the impact of experimental errors introduced by small movements of the camera and the presence air bubbles trapped in the porous medium.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [41] Review of Machine Learning-Based Intrusion Detection Techniques for MANETs
    Hamza, Fouziah
    Vigila, S. Maria Celestin
    COMPUTING AND NETWORK SUSTAINABILITY, 2019, 75
  • [42] Towards Model Generalization for Intrusion Detection: Unsupervised Machine Learning Techniques
    Verkerken, Miel
    D'hooge, Laurens
    Wauters, Tim
    Volckaert, Bruno
    De Turck, Filip
    JOURNAL OF NETWORK AND SYSTEMS MANAGEMENT, 2022, 30 (01)
  • [43] Towards Model Generalization for Intrusion Detection: Unsupervised Machine Learning Techniques
    Miel Verkerken
    Laurens D’hooge
    Tim Wauters
    Bruno Volckaert
    Filip De Turck
    Journal of Network and Systems Management, 2022, 30
  • [44] Unsupervised Machine Learning Techniques for Network Intrusion Detection on Modern Data
    Verkerken, Miel
    D'hooge, Laurens
    Wauters, Tim
    Volckaert, Bruno
    De Turck, Filip
    2020 FOURTH CYBER SECURITY IN NETWORKING CONFERENCE (CSNET), 2020,
  • [45] A robust intrusion detection system using machine learning techniques for MANET
    Ravi, N.
    Ramachandran, G.
    INTERNATIONAL JOURNAL OF KNOWLEDGE-BASED AND INTELLIGENT ENGINEERING SYSTEMS, 2020, 24 (03) : 253 - 260
  • [46] A Survey of Machine Learning-based loT Intrusion Detection Techniques
    Long, Jing
    Fang, Fei
    Luo, Haibo
    2021 IEEE 6TH INTERNATIONAL CONFERENCE ON SMART CLOUD (SMARTCLOUD 2021), 2021, : 7 - 12
  • [47] Review on intrusion detection using feature selection with machine learning techniques
    Kalimuthan, C.
    Renjit, J. Arokia
    MATERIALS TODAY-PROCEEDINGS, 2020, 33 : 3794 - 3802
  • [48] Machine Learning Techniques for feature Reduction in Intrusion Detection Systems: A Comparison
    Bahrololum, M.
    Salahi, E.
    Khaleghi, M.
    ICCIT: 2009 FOURTH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND CONVERGENCE INFORMATION TECHNOLOGY, VOLS 1 AND 2, 2009, : 1091 - 1095
  • [49] Intrusion Detection in Computer Networks Using Hybrid Machine Learning Techniques
    Perez, Deyban
    Astor, Miguel A.
    Abreu, David Perez
    Scalise, Eugenio
    2017 XLIII LATIN AMERICAN COMPUTER CONFERENCE (CLEI), 2017,
  • [50] An Extensive Review of Machine Learning and Deep Learning Techniques on Network Intrusion Detection for IoT
    Walling, Supongmen
    Lodh, Sibesh
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2025, 36 (02):