Point symmetry groups and operators revisited

被引:0
|
作者
Novak, I
机构
来源
HELVETICA PHYSICA ACTA | 1997年 / 70卷 / 05期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have studied finite point symmetry group (PSG) operators. Hermitian and unitary properties of these operators were deduced by analyzing their matrix representations. We showed that PSG operators: E, C-2, sigma and S-2, and PSG groups: C-1, C-i, C-2, C-s, D-2, C-2v, C-2h and D-2h are the only unitary and hermitian ones. The algebraic relationships between point symmetry groups are analyzed on the basis of isomorphism, homomorphism and descent-of-symmetry. Hasse diagram for homomorphic PSG is derived for the first time.
引用
收藏
页码:670 / 676
页数:7
相关论文
共 50 条
  • [21] POINT GROUPS OF SYMMETRY DESCRIBED BY MEANS OF TENSORS
    SEDOV, LI
    LOKHIN, VV
    DOKLADY AKADEMII NAUK SSSR, 1963, 149 (04): : 796 - &
  • [22] SYMMETRY-ADAPTED POLYNOMIALS OF POINT GROUPS
    FASSLER, A
    SCHWARZENBACH, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1979, 30 (02): : 190 - 200
  • [23] COMPOSITION SERIES AND COLOR SYMMETRY POINT GROUPS
    RAO, KRM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (05): : 739 - 748
  • [24] Twin point groups and the polychromatic symmetry of twins
    Nespolo, M
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2004, 219 (02): : 57 - 71
  • [25] Physical models of the symmetry point groups.
    Shaw, CF
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 217 : U323 - U323
  • [26] Point groups of symmetry applied in molecular spectroscopy
    Dorohoi, Dana-Ortansa
    Gosav, Stela
    Praisler, Mirela
    SIX INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION, 2007, 899 : 361 - +
  • [27] QUASI-SYMMETRY AND DOUBLE POINT GROUPS
    KRISHNAMURTY, TSG
    PRASAD, LSRK
    RAO, KRM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (06): : 1947 - 1956
  • [28] CASIMIR-OPERATORS, DUALITY, AND THE POINT GROUPS
    SULLIVAN, JJ
    SIDDALL, TH
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (06) : 1964 - 1969
  • [29] Oscillating singular integral operators on compact Lie groups revisited
    Cardona, Duvan
    Ruzhansky, Michael
    MATHEMATISCHE ZEITSCHRIFT, 2023, 303 (02)
  • [30] Oscillating singular integral operators on compact Lie groups revisited
    Duván Cardona
    Michael Ruzhansky
    Mathematische Zeitschrift, 2023, 303