VARIATIONAL FORMULATION OF EISENHART'S UNIFIED THEORY

被引:0
|
作者
Poplawski, Nikodem J. [1 ]
机构
[1] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2009年 / 24卷 / 20-21期
关键词
Unified field theory; metric-affine gravity; EINSTEIN-MAXWELL THEORY; GENERAL-RELATIVITY; FIELD-EQUATIONS; GRAVITATION; ELECTROMAGNETISM; TORSION; ELECTRICITY; PRINCIPLES;
D O I
10.1142/S0217751X09044735
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Eisenhart's classical unified field theory is based on a non-Riemannian affine connection related to the covariant derivative of the electromagnetic field tensor. The sourceless field equations of this theory arise from vanishing of the torsion trace and the symmetrized Ricci tensor. We formulate Eisenhart's theory from the metric-affine variational principle. In this formulation, a Lagrange multiplier constraining the torsion becomes the source for the Maxwell equations.
引用
收藏
页码:3975 / 3984
页数:10
相关论文
共 50 条
  • [21] Unified MOSFET scaling theory using the variational method
    He, P
    Chen, WS
    Tian, LL
    Li, ZJ
    INTERNATIONAL JOURNAL OF ELECTRONICS, 2002, 89 (11) : 821 - 831
  • [22] REISSNER'S MIXED VARIATIONAL THEOREM FOR LAYER-WISE REFINED BEAM MODELS BASED ON THE UNIFIED FORMULATION
    Carrera, Erasmo
    de Miguel, Alberto Garcia
    Pagani, Alfonso
    Zappino, Enrico
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2017, VOL 1, 2018,
  • [23] A vielbein formulation of unified Einstein-Maxwell theory
    Vignolo, Stefano
    Massa, Enrico
    CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (23) : 6781 - 6791
  • [24] A UNIFIED THEORY FOR FORMULATION OF HYBRID STRESS MEMBRANE ELEMENTS
    YUAN, KY
    WEN, JC
    PIAN, THH
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (03) : 457 - 474
  • [25] Lagrangian formulation of domain decomposition methods:: A unified theory
    Magoules, Frederic
    Roux, Francois-Xavier
    APPLIED MATHEMATICAL MODELLING, 2006, 30 (07) : 593 - 615
  • [26] VARIATIONAL FORMULATION OF NONSTATIONARY PROBLEMS OF THE THEORY OF THIN SHELLS
    GRIGORENKO, YM
    ZVEREV, OA
    KOKOSHIN, SS
    SOVIET APPLIED MECHANICS, 1986, 22 (09): : 823 - 827
  • [27] OUTLINE OF A VARIATIONAL FORMULATION OF ZONE-PLATE THEORY
    TATCHYN, R
    CSONKA, PL
    LINDAU, I
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1984, 1 (06) : 806 - 811
  • [28] AN APPROACH TO THE FORMULATION OF VARIATIONAL FUNCTIONALS IN THE THEORY OF LAMINAR SHELLS
    OLIFER, VI
    SOVIET APPLIED MECHANICS, 1990, 26 (05): : 475 - 482
  • [29] Variational formulation for fractional hyperbolic problems in the theory of viscoelasticity
    Bravo-Castillero, Julian
    Lopez Rios, Luis Fernando
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (05):
  • [30] VARIATIONAL FORMULATION OF QUANTUM FIELD THEORY .I.
    DAHMEN, HD
    JONALASI.G
    NUOVO CIMENTO A, 1967, 52 (03): : 807 - +