Comparison of Additive and Multiplicative Bayesian Models for Longitudinal Count Data with Overdispersion Parameters: A Simulation Study

被引:4
|
作者
Aregay, Mehreteab [1 ]
Shkedy, Ziv [2 ]
Molenberghs, Geert [1 ,2 ]
机构
[1] Katholieke Univ Leuven, I BioStat, Leuven, Belgium
[2] Hasselt Univ, I BioStat, B-3590 Diepenbeek, Belgium
关键词
Additive model; Deviance information criteria; Multiplicative model; Overdispersion; RATES;
D O I
10.1080/03610918.2013.781629
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In applied statistical data analysis, overdispersion is a common feature. It can be addressed using both multiplicative and additive random effects. A multiplicative model for count data incorporates a gamma random effect as a multiplicative factor into the mean, whereas an additive model assumes a normally distributed random effect, entered into the linear predictor. Using Bayesian principles, these ideas are applied to longitudinal count data, based on the so-called combined model. The performance of the additive and multiplicative approaches is compared using a simulation study.
引用
收藏
页码:454 / 473
页数:20
相关论文
共 50 条
  • [31] Disease Mapping and Regression with Count Data in the Presence of Overdispersion and Spatial Autocorrelation: A Bayesian Model Averaging Approach
    Mohebbi, Mohammadreza
    Wolfe, Rory
    Forbes, Andrew
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2014, 11 (01) : 883 - 902
  • [32] An additive-multiplicative model for longitudinal data with informative observation times
    Li, Yang
    Tu, Wanzhu
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2024, 33 (05) : 807 - 824
  • [33] EFFICIENT ALGORITHM FOR ADDITIVE AND MULTIPLICATIVE MODELS IN DATA ENVELOPMENT ANALYSIS
    SUEYOSHI, T
    CHANG, YL
    OPERATIONS RESEARCH LETTERS, 1989, 8 (04) : 205 - 213
  • [34] A Bayesian longitudinal trend analysis of count data with Gaussian processes
    VanSchalkwyk, Samantha
    Jeske, Daniel R.
    Kim, Jane H.
    Martins-Green, Manuela
    BIOMETRICAL JOURNAL, 2022, 64 (01) : 74 - 90
  • [35] Analysis of multitrait-multiocassion data:: additive and multiplicative models
    Baeza, AH
    Romá, VG
    PSICOTHEMA, 2000, 12 : 283 - 287
  • [36] Fast Bayesian estimation of spatial count data models
    Bansal, Prateek
    Krueger, Rico
    Graham, Daniel J.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 157
  • [37] Bayesian analysis of econometric models for count data: A survey
    Winkelmann, R
    EXPLORATORY DATA ANALYSIS IN EMPIRICAL RESEARCH, PROCEEDINGS, 2003, : 204 - 215
  • [38] Bayesian Correction for Misclassification in Multilevel Count Data Models
    Nelson, Tyler
    Song, Joon Jin
    Chin, Yoo-Mi
    Stamey, James D.
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2018, 2018
  • [39] Bayesian epidemic models for spatially aggregated count data
    Malesios, Chrisovalantis
    Demiris, Nikolaos
    Kalogeropoulos, Konstantinos
    Ntzoufras, Ioannis
    STATISTICS IN MEDICINE, 2017, 36 (20) : 3216 - 3230
  • [40] An empirical approach to determine a threshold for assessing overdispersion in Poisson and negative binomial models for count data
    Payne, Elizabeth H.
    Gebregziabher, Mulugeta
    Hardin, James W.
    Ramakrishnan, Viswanathan
    Egede, Leonard E.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (06) : 1722 - 1738