Correcting the Site Frequency Spectrum for Divergence-Based Ascertainment

被引:10
|
作者
Kern, Andrew D.
机构
[1] Department of Biological Sciences, Dartmouth College, Hanover, NH
来源
PLOS ONE | 2009年 / 4卷 / 04期
关键词
ULTRACONSERVED ELEMENTS; POPULATION-GENETICS; SELECTION; POLYMORPHISM;
D O I
10.1371/journal.pone.0005152
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Comparative genomics based on sequenced referenced genomes is essential to hypothesis generation and testing within population genetics. However, selection of candidate regions for further study on the basis of elevated or depressed divergence between species leads to a divergence-based ascertainment bias in the site frequency spectrum within selected candidate loci. Here, a method to correct this problem is developed that obtains maximum-likelihood estimates of the unascertained allele frequency distribution using numerical optimization. I show how divergence-based ascertainment may mimic the effects of natural selection and offer correction formulae for performing proper estimation into the strength of selection in candidate regions in a maximum-likelihood setting.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Synthetic Tabular Data Validation: A Divergence-Based Approach
    Apellaniz, Patricia A.
    Jimenez, Ana
    Arroyo Galende, Borja
    Parras, Juan
    Zazo, Santiago
    IEEE ACCESS, 2024, 12 : 103895 - 103907
  • [22] Skew Divergence-Based Fuzzy Segmentation of Rock Samples
    Carvalho, Bruno M.
    Garduno, Edgar
    Santos, Iracu O.
    2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES 2013 (IC-MSQUARE 2013), 2014, 490
  • [23] Kullback-Leibler Divergence-Based Visual Servoing
    Li, Xiangfei
    Zhao, Huan
    Ding, Han
    2021 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2021, : 720 - 726
  • [24] Divergence-Based Risk Measures: A Discussion on Sensitivities and Extensions
    Xu, Meng
    Angulo, Jose M.
    ENTROPY, 2019, 21 (07)
  • [25] Orthogonal Projection Divergence-Based Hyperspectral Band Selection
    Su Hong-jun
    Sheng Ye-hua
    Yang He
    Du Qian
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2011, 31 (05) : 1309 - 1313
  • [26] Bregman Divergence-Based Regularization for Transfer Subspace Learning
    Si, Si
    Tao, Dacheng
    Geng, Bo
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2010, 22 (07) : 929 - 942
  • [27] Information criteria in classification: new divergence-based classifiers
    Rodriguez, William D. A.
    Amaral, Getulio J. A.
    Nascimento, Abraao D. C.
    Ferreira, Jodavid A.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (17) : 3200 - 3217
  • [28] Divergence-Based Magnetic Resonance Electrical Properties Tomography
    Liu, Chunyi
    Guo, Lei
    Li, Mingyan
    Chen, Haiwei
    Jin, Jin
    Chen, Wufan
    Liu, Feng
    Crozier, Stuart
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2021, 68 (01) : 192 - 203
  • [29] Moser Flow: Divergence-based Generative Modeling on Manifolds
    Rozen, Noam
    Grover, Aditya
    Nickel, Maximilian
    Lipman, Yaron
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [30] Divergence-based supervised information feature compression algorithm
    Ding, Shi-Fei
    Shi, Zhong-Zhi
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 1, 2006, 3971 : 1421 - 1426