Mapping substrate/film adhesion with contact-resonance-frequency atomic force microscopy

被引:49
|
作者
Hurley, D. C. [1 ]
Kopycinska-Muller, M. [1 ]
Langlois, E. D. [1 ]
Kos, A. B. [1 ]
Barbosa, N., III [1 ]
机构
[1] Natl Inst Stand & Technol, Boulder, CO 80305 USA
关键词
ACOUSTIC MICROSCOPY; ELASTIC PROPERTIES; STIFFNESS; DISPLACEMENT; CANTILEVERS;
D O I
10.1063/1.2221404
中图分类号
O59 [应用物理学];
学科分类号
摘要
We have used contact-resonance-frequency atomic force microscopy techniques to nondestructively image variations in adhesion at a buried interface. Images were acquired on a sample containing a 20 mn gold (An) blanket film on silicon (Si) with a 1 nm patterned interlayer of titanium (Ti). This design produced regions of very weak adhesion (Si/Au) and regions of strong adhesion (Si/Ti/Au). Values of the contact stiffness were 5% lower in the regions of weak adhesion. The observed behavior is consistent with theoretical predictions for layered systems with disbonds. Our results represent progress towards quantitative measurement of adhesion parameters on the nanoscale.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Dual-frequency resonance-tracking atomic force microscopy
    Rodriguez, Brian J.
    Callahan, Clint
    Kalinin, Sergei V.
    Proksch, Roger
    NANOTECHNOLOGY, 2007, 18 (47)
  • [42] Application of atomic force microscopy in adhesion force measurements
    Hassani, Sedigheh Sadegh
    Daraee, Maryam
    Sobat, Zahra
    JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2021, 35 (03) : 221 - 241
  • [43] Frequency, amplitude, and phase measurements in contact resonance atomic force microscopies
    Stan, Gheorghe
    Solares, Santiago D.
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2014, 5 : 278 - 288
  • [44] Investigation into the correlation factor of substrate and multilayer film surfaces by atomic force microscopy
    Grishchenko, J. V.
    Zanaveskin, M. L.
    CRYSTALLOGRAPHY REPORTS, 2013, 58 (03) : 493 - 497
  • [45] Investigation into the correlation factor of substrate and multilayer film surfaces by atomic force microscopy
    J. V. Grishchenko
    M. L. Zanaveskin
    Crystallography Reports, 2013, 58 : 493 - 497
  • [46] Nanorheology mapping by atomic force microscopy
    Nakajima, K
    Fujinami, S
    Nukaga, H
    Wataba, H
    Kitano, H
    Ono, N
    Endoh, K
    Kaneko, M
    Nishi, T
    KOBUNSHI RONBUNSHU, 2005, 62 (10) : 476 - 487
  • [47] CONTACT STIFFNESS CALIBRATION PLATFORM FOR NANOMECHANICAL PROPERTY MEASUREMENTS WITH CONTACT RESONANCE ATOMIC FORCE MICROSCOPY
    Rosenberger, M. R.
    Chen, S.
    Prater, C. B.
    King, W. P.
    2015 TRANSDUCERS - 2015 18TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS), 2015, : 1235 - 1238
  • [48] Nanoscale-resolved elasticity: contact mechanics for quantitative contact resonance atomic force microscopy
    Jakob, A. M.
    Buchwald, J.
    Rauschenbach, B.
    Mayr, S. G.
    NANOSCALE, 2014, 6 (12) : 6898 - 6910
  • [49] Numerical verification of the hydrodynamic reconstruction method for contact resonance atomic force microscopy
    Shihab, Rafiul
    Tung, Ryan C.
    AIP ADVANCES, 2018, 8 (08):
  • [50] Measurement of Viscoelastic Loss Tangent with Contact Resonance Modes of Atomic Force Microscopy
    Hurley, Donna C.
    Campbell, Sara E.
    Killgore, Jason P.
    Cox, Lewis M.
    Ding, Yifu
    MACROMOLECULES, 2013, 46 (23) : 9396 - 9402