Streaming Universal Distortion-Free Entanglement Concentration

被引:6
|
作者
Blume-Kohout, Robin [1 ]
Croke, Sarah [2 ]
Gottesman, Daniel [3 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87123 USA
[2] Univ Glasgow, Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland
[3] Perimeter Inst Theoret Phys, Waterloo, ON N2L2Y5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Entanglement concentration; partially entangled states; quantum algorithms; quantum information; sequential coding; UNBIASED RANDOM SEQUENCE; BIASED COIN; QUANTUM; CHANNELS;
D O I
10.1109/TIT.2013.2292135
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a streaming (sequential) protocol for universal entanglement concentration at the Shannon bound. Alice and Bob begin with N identical (but unknown) two-qubit pure states, each containing E ebits of entanglement. They each run a reversible algorithm on their qubits, and end up with Y perfect EPR pairs, where Y = NE +/- O(root N). Our protocol is streaming, so the N input systems are fed in one at a time, and perfect EPR pairs start popping out almost immediately. It matches the optimal block protocol exactly at each stage, so the average yield after n inputs is < Y > = nE - O(log n). So, somewhat surprisingly, there is no tradeoff between yield and lag-our protocol optimizes both. In contrast, the optimal N-qubit block protocol achieves the same yield, but since no EPR pairs are produced until the entire input block is read, its lag is O(N). Finally, our algorithm runs in O(log N) space, so a lot of entanglement can be efficiently concentrated using a very small (e. g., current or near-future technology) quantum processor. Along the way, we find an optimal streaming protocol for extracting randomness from classical i.i.d. sources and a more space-efficient implementation of the Schur transform.
引用
收藏
页码:334 / 350
页数:17
相关论文
共 50 条
  • [21] Thin metal welded distortion-free
    Cullison, A
    WELDING JOURNAL, 1996, 75 (10) : 14 - 14
  • [22] A Distortion-Free General Purpose LVDS Driver
    Park, Seung-Jin
    Seo, Young Hun
    Park, Hong-June
    Sim, Jae-Yoon
    IEICE TRANSACTIONS ON ELECTRONICS, 2009, E92C (02): : 278 - 280
  • [23] Phase distortion-free paramagnetic NMR spectra
    Ravera, Enrico
    JOURNAL OF MAGNETIC RESONANCE OPEN, 2021, 8-9
  • [24] Distortion-free data-hiding algorithm
    Huang, Xia-Ling
    Liu, Hong-Mei
    Zhongshan Daxue Xuebao/Acta Scientiarum Natralium Universitatis Sunyatseni, 2002, 41 (06):
  • [25] Compound Metalens Enabling Distortion-Free Imaging
    Zheng, Hanyu
    Yang, Fan
    Lin, Hung-, I
    Shalaginov, Mikhail Y.
    Li, Zhaoyi
    Burns, Padraic
    Gu, Tian
    Hu, Juejun
    ENGINEERING, 2025, 45 : 52 - 58
  • [26] Compound Metalens Enabling Distortion-Free Imaging
    Hanyu Zheng
    Fan Yang
    HungI Lin
    Mikhail YShalaginov
    Zhaoyi Li
    Padraic Burns
    Tian Gu
    Juejun Hu
    Engineering, 2025, 45 (02) : 52 - 58
  • [27] Distortion-free robust watermarking: a case study
    Coltuc, Dinu
    Chassery, Jean-Marc
    SECURITY, STEGANOGRAPHY, AND WATERMARKING OF MULTIMEDIA CONTENTS IX, 2007, 6505
  • [28] Digital Distortion-Free PWM and Click Modulation
    Chierchie, Fernando
    Paolini, Eduardo E.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2018, 65 (03) : 396 - 400
  • [29] A novel verification criterion for distortion-free fingerprints
    Yager, N
    Amin, A
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS, 2005, 3691 : 65 - 72
  • [30] Distortion-free delta-sigma beamforming
    Nilsen, Carl-Inge Colombo
    Holm, Sverre
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2008, 55 (08) : 1719 - 1728