A globally convergent method for finding zeros of smooth functions

被引:2
|
作者
He, W [1 ]
Prabhu, N [1 ]
机构
[1] Purdue Univ, Sch Ind Engn, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
global convergence; parallel homotopy; root-finding; degree theory; smooth function;
D O I
10.1016/S0096-3003(01)00244-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Computing a zero of a smooth function is an old and extensively researched problem in numerical computation. While a large body of results and algorithms has been reported on this problem in the literature, to the extent we are aware, the published literature does not contain a globally convergent 1 algorithm for finding a zero of an arbitrary smooth function. In this paper we present the first globally convergent algorithm for computing a zero (if one exists) of a general smooth function. After presenting the algorithm and a proof of global convergence, we also clarify the connection between our algorithm and some known results in topological degree theory. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:327 / 335
页数:9
相关论文
共 50 条
  • [21] A globally convergent incremental Newton method
    M. Gürbüzbalaban
    A. Ozdaglar
    P. Parrilo
    Mathematical Programming, 2015, 151 : 283 - 313
  • [22] A GLOBALLY CONVERGENT STABILIZED SQP METHOD
    Gill, Philip E.
    Robinson, Daniel P.
    SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (04) : 1983 - 2010
  • [23] IN THE SEARCH FOR ALL ZEROS OF SMOOTH FUNCTIONS
    Plaskota, L.
    JOURNAL OF APPLIED AND NUMERICAL ANALYSIS, 2023, 1 : 72 - 79
  • [24] A globally convergent incremental Newton method
    Guerbuzbalaban, M.
    Ozdaglar, A.
    Parrilo, P.
    MATHEMATICAL PROGRAMMING, 2015, 151 (01) : 283 - 313
  • [25] Globally convergent modification of the quickprop method
    Vrahatis, MN
    Magoulas, GD
    Plagianakos, VP
    NEURAL PROCESSING LETTERS, 2000, 12 (02) : 159 - 169
  • [26] A GLOBALLY CONVERGENT BALL NEWTON METHOD
    NICKEL, KL
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (06) : 988 - 1003
  • [27] Smooth functions with uncountably many zeros
    Conejero, J. A.
    Munoz-Fernandez, G. A.
    Arcila, M. Murillo
    Seoane-Sepulveda, J. B.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2015, 22 (01) : 71 - 75
  • [28] Learning Globally Smooth Functions on Manifolds
    Cervino, Juan
    Chamon, Luiz F. O.
    Haeffele, Benjamin D.
    Vidal, Rene
    Ribeiro, Alejandro
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [29] A globally convergent BFGS method for nonlinear monotone equations without any merit functions
    Zhou, Wei-Jun
    Li, Dong-Hui
    MATHEMATICS OF COMPUTATION, 2008, 77 (264) : 2231 - 2240
  • [30] Finding zeros of nonlinear functions using the hybrid parallel cell mapping method
    Xiong, Fu-Rui
    Schuetze, Oliver
    Ding, Qian
    Sun, Jian-Qiao
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 34 : 23 - 37