Comparative Genome Assessment of the Two Novel Poly-γ-Glutamic Acid Producing Bacillus Strains

被引:1
|
作者
Tiwari, Deepika Pandey [1 ,2 ]
Chatterjee, Poonam Mishra [1 ,2 ]
Uppadhyaya, Niyati [1 ]
Bhaduri, Anirban [1 ]
Raval, Ritu [2 ]
Dubey, Ashok Kumar [1 ,2 ]
机构
[1] Tata Chem Ltd, Food Sci & Technol, Innovat Ctr, Survey 315,Hissa 1-14,Paud Rd, Pune 412111, Maharashtra, India
[2] Manipal Acad Higher Educ, Dept Biotechnol, Manipal Inst Technol, Manipal 576104, Karnataka, India
来源
关键词
Whole genome sequencing; Bacillus subtilis; Bacillus methylotrophicus; PGA; pgdS; POLY(GAMMA-GLUTAMIC ACID); SUBTILIS; ACTIVATION; DIVERSITY; COMPLEX; GENE; WILD;
D O I
10.22207/JPAM.13.2.03
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Poly-gamma-glutamic acid (PGA) is a homopolyamide, biosynthesized mostly by Bacillus sp. Our study focuses on understanding the genetic differences between the two species of Bacillus for their capability to produce PGA. Genes related to PGA synthesis, regulation, degradation and mannitol utilization of Bacillus subtilis Natto3 (BSN3) were compared with that of B. methylotrophicus IC4 (BMIC4). These strains differed in their genome sizes and average gene lengths. BMIC4 genome size was 4,214,684 bp which was larger than BSN3 comprising of 3,601,055 bp with no plasmid found in either of them. The average gene length of BSN3 and BMIC4 were 843.33 bp and 819.82 bp, respectively with higher number of predicted genes and proteins in BMIC4 (4341 and 4223 respectively). Interestingly, BMIC4 being larger in genome size and gene number, exhibited lesser number of unique pfam results (62) compared to 389 unique pfam of BSN3. Based on 16S rRNA gene sequence, BSN3 and BMIC4 were placed distantly on the phylogenetic tree. Sequence similarity of PGA producing genes ywsC, ywtA and ywtB between BSN3 and BMIC4 was 100%, 100% and 30% respectively. We report the presence of PGA degrading gene pgdS in BMIC4 which is otherwise reportedly absent in various strains of B. methylotrophicus. Sequence variation in the genes may have an impact on the PGA chain length, produced by these strains as BMIC4 produces high molecular weight PGA than BSN3. As B. methylotrophicus is newly discovered species, our comparative study will provide insights on the genomic variability between these two novel PGA producing strains.
引用
收藏
页码:667 / 676
页数:10
相关论文
共 50 条
  • [21] Rewiring glycerol metabolism for enhanced production of poly-γ-glutamic acid in Bacillus licheniformis
    Yangyang Zhan
    Bojie Sheng
    Huan Wang
    Jiao Shi
    Dongbo Cai
    Li Yi
    Shihui Yang
    Zhiyou Wen
    Xin Ma
    Shouwen Chen
    Biotechnology for Biofuels, 11
  • [22] Efficient production of poly-γ-glutamic acid by bacillus subtilis ZJU-7
    Feng Shi
    Zhinan Xu
    Peilin Cen
    Applied Biochemistry and Biotechnology, 2006, 133
  • [23] Production of poly-γ-glutamic acid by fed-batch culture of Bacillus licheniformis
    Sung Ho Yoon
    Jin Hwan Do
    Sang Yup Lee
    Ho Nam Chang
    Biotechnology Letters, 2000, 22 : 585 - 588
  • [24] Enhanced production of poly-γ-glutamic acid by a newly-isolated Bacillus subtilis
    Ju, Wan-Taek
    Song, Yong-Su
    Jung, Woo-Jin
    Park, Ro-Dong
    BIOTECHNOLOGY LETTERS, 2014, 36 (11) : 2319 - 2324
  • [25] Efficient production of poly-γ-glutamic acid by Bacillus subtilis ZJU-7
    Shi, Feng
    Xu, Zhinan
    Cen, Peilin
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2006, 133 (03) : 271 - 281
  • [26] Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering
    Feng, Jun
    Gu, Yanyan
    Quan, Yufen
    Cao, Mingfeng
    Gao, Weixia
    Zhang, Wei
    Wang, Shufang
    Yang, Chao
    Song, Cunjiang
    METABOLIC ENGINEERING, 2015, 32 : 106 - 115
  • [27] Calcium regulates glutamate dehydrogenase and poly-γ-glutamic acid synthesis in Bacillus natto
    Yonghong Meng
    Guiru Dong
    Chen Zhang
    Yuanyuan Ren
    Yuling Qu
    Weifeng Chen
    Biotechnology Letters, 2016, 38 : 673 - 679
  • [28] Enhanced production of poly-γ-glutamic acid by a newly-isolated Bacillus subtilis
    Wan-Taek Ju
    Yong-Su Song
    Woo-Jin Jung
    Ro-Dong Park
    Biotechnology Letters, 2014, 36 : 2319 - 2324
  • [29] Rewiring glycerol metabolism for enhanced production of poly-γ-glutamic acid in Bacillus licheniformis
    Zhan, Yangyang
    Sheng, Bojie
    Wang, Huan
    Shi, Jiao
    Cai, Dongbo
    Yi, Li
    Yang, Shihui
    Wen, Zhiyou
    Ma, Xin
    Chen, Shouwen
    BIOTECHNOLOGY FOR BIOFUELS, 2018, 11
  • [30] Production of poly-γ-glutamic acid by fed-batch culture of Bacillus licheniformis
    Yoon, SH
    Hwan Do, J
    Lee, SY
    Nam Chang, H
    BIOTECHNOLOGY LETTERS, 2000, 22 (07) : 585 - 588