A Validity Index for Fuzzy Clustering Based on Bipartite Modularity

被引:12
|
作者
Liu, Yongli [1 ]
Zhang, Xiaoyang [1 ]
Chen, Jingli [1 ]
Chao, Hao [1 ]
机构
[1] Henan Polytech Univ, Sch Comp Sci & Technol, Jiaozuo 454003, Henan, Peoples R China
关键词
D O I
10.1155/2019/2719617
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Because traditional fuzzy clustering validity indices need to specify the number of clusters and are sensitive to noise data, we propose a validity index for fuzzy clustering, named CSBM (compactness separateness bipartite modularity), based on bipartite modularity. CSBM enhances the robustness by combining intraclass compactness and interclass separateness and can automatically determine the optimal number of clusters. In order to estimate the performance of CSBM, we carried out experiments on six real datasets and compared CSBM with other six prominent indices. Experimental results show that the CSBM index performs the best in terms of robustness while accurately detecting the number of clusters.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Density based cluster validity measurement for fuzzy clustering
    Meng, Lingkui
    Hu, Chunchun
    Wang, Frank Zhigang
    2006 International Conference on Computational Intelligence and Security, Pts 1 and 2, Proceedings, 2006, : 819 - 822
  • [42] DEA-based internal validity index for clustering
    Zhao, Jing
    An, Qingxian
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2025, 76 (02) : 280 - 293
  • [43] A Clustering Method Based on the Modified RS Validity Index
    Starczewski, Artur
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT II, 2013, 7895 : 242 - 250
  • [44] A Validity Criterion for Fuzzy Clustering
    Brodowski, Stanislaw
    TRANSACTIONS ON COMPUTATIONAL COLLECTIVE INTELLIGENCE XIII, 2014, 8342 : 132 - 151
  • [45] A VALIDITY MEASURE FOR FUZZY CLUSTERING
    XIE, XLL
    BENI, G
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (08) : 841 - 847
  • [46] A Validity Criterion for Fuzzy Clustering
    Brodowski, Stanislaw
    COMPUTATIONAL COLLECTIVE INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS, PT I, 2011, 6922 : 113 - 122
  • [47] Research on Fuzzy Clustering Validity
    Chen, Weijin
    Dong, Huailin
    Wu, Qingfeng
    Lin, Ling
    ADVANCES IN SCIENCE AND ENGINEERING, PTS 1 AND 2, 2011, 40-41 : 174 - 182
  • [48] A new validity index for fuzzy-possibilistic c-means clustering
    Zarandi, M. H. Fazel
    Sotodian, S.
    Castillo, O.
    SCIENTIA IRANICA, 2021, 28 (04) : 2277 - 2293
  • [49] IMI2: A fuzzy clustering validity index for multiple imbalanced clusters
    Liu, Fu
    Wang, Jingyuan
    Liu, Yun
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [50] A clustering validity assessment index
    Kim, Y
    Lee, S
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, 2003, 2637 : 602 - 608