A least-squares finite element method (LSFEM) for bending problems of thin plates is developed. This LSFEM is based on the first-order deflection-slope-moment-shear force formulation. Four compatibility conditions are added into the first-order system; thus, the method can accommodate all kinds of equal-order interpolations. Numerical experiments on various examples show that the method achieves an optimal rate of convergence for all eight variables. Copyright (C) 2002 John Wiley Sons, Ltd.
机构:
Virginia Tech, Dept Math, Blacksburg, VA 24060 USA
Virginia Tech, Acad Data Sci, Blacksburg, VA USA
Emory Univ, Dept Math, Atlanta, GA USAVirginia Tech, Dept Math, Blacksburg, VA 24060 USA
Chung, Matthias
Krueger, Justin
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Tech, Dept Math, Blacksburg, VA 24060 USAVirginia Tech, Dept Math, Blacksburg, VA 24060 USA
Krueger, Justin
Liu, Honghu
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Tech, Dept Math, Blacksburg, VA 24060 USAVirginia Tech, Dept Math, Blacksburg, VA 24060 USA