Another proof of Banaschewski's surjection theorem

被引:0
|
作者
Baboolal, Dharmanand [1 ]
Picado, Jorge [2 ]
Pultr, Ales [3 ,4 ]
机构
[1] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Private Bag X54001, ZA-4000 Durban, South Africa
[2] Univ Coimbra, Dept Math, CMUC, P-3001501 Coimbra, Portugal
[3] Charles Univ Prague, MFF, Dept Appl Math, Malostranske Nam 24, CR-11800 Prague 1, Czech Republic
[4] Charles Univ Prague, MFF, ITI, Malostranske Nam 24, CR-11800 Prague 1, Czech Republic
基金
新加坡国家研究基金会;
关键词
Frame (locale); sublocale; uniform frame; quasi-uniform frame; uniform embedding; complete uniform frame; completion; Cauchy map; Cauchy filter; Cauchy complete; COMPLETION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new proof of Banaschewski's theorem stating that the completion lift of a uniform surjection is a surjection. The new procedure allows to extend the fact (and, similarly, the related theorem on closed uniform sublocales of complete uniform frames) to quasi-uniformities ("not necessarily symmetric uniformities"). Further, we show how a (regular) Cauchy point on a closed uniform sublocale can be extended to a (regular) Cauchy point on the larger (quasi-) uniform frame.
引用
收藏
页码:113 / 130
页数:18
相关论文
共 50 条