Efficiency improvement of InGaP/GaAs/Ge solar cells by hydrothermal-deposited ZnO nanotube structure

被引:9
|
作者
Chung, Chen-Chen [1 ]
Binh Tinh Tran [1 ]
Lin, Kung-Liang [2 ]
Ho, Yen-Teng [1 ]
Yu, Hung-Wei [1 ]
Nguyen-Hong Quan [1 ]
Chang, Edward Yi [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 300, Taiwan
[2] Ind Technol Res Inst, Mech & Syst Res Labs, Hsinchu 31040, Taiwan
来源
关键词
ZnO nanotube; Triple-junction; Hydrothermal;
D O I
10.1186/1556-276X-9-338
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper, a zinc oxide (ZnO) nanotube, fabricated by the hydrothermal growth method on triple-junction (T-J) solar cell devices to enhance efficiency, is investigated. Compared to those of bare T-J solar cells (without antireflection (AR) coating) and solar cells with Si3N4 AR coatings, the experimental results show that the T-J solar cells, which use a ZnO nanotube as an AR coating, have the lowest reflectance in the short wavelength spectrum. The ZnO nanotube has the lowest light reflection among all experimental samples, especially in the range of 350 to 500 nm from ultraviolet (UV) to visible light. It was found that a ZnO nanotube can enhance the conversion efficiency by 4.9%, compared with a conventional T-J solar cell. The Si3N4 AR coatings also enhance the conversion efficiency by 3.2%.The results show that a cell with ZnO nanotube coating could greatly improve solar cell performances.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [31] EFFICIENCY OF GE SOLAR-CELLS DESIGNED FOR GE-GAAS BICOLOR SYSTEMS
    SAUTREUIL, B
    LAUGIER, A
    SOLAR ENERGY MATERIALS, 1981, 5 (01): : 21 - 36
  • [32] Growth and characterization of high efficiency GaAIAs/GaAs/Ge solar cells
    Timo, G
    Flores, C
    Campesato, R
    Passoni, D
    Bollani, B
    ADVANCES IN CRYSTAL GROWTH, 1996, 203 : 97 - 102
  • [33] Properties and structure of antiphase boundaries in GaAs/Ge solar cells
    Holt, DB
    Hardingham, C
    Lazzarini, L
    Nasi, L
    ZanottiFregonara, C
    Salviati, G
    Mazzer, M
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1996, 42 (1-3): : 204 - 207
  • [34] Integration of InGaP/GaAs/Ge triple-junction solar cells on deeply patterned silicon substrates
    Scaccabarozzi, Andrea
    Binetti, Simona
    Acciarri, Maurizio
    Isella, Giovanni
    Campesato, Roberta
    Gori, Gabriele
    Casale, Maria Cristina
    Mancarella, Fulvio
    Noack, Michael
    von Kaenel, Hans
    Miglio, Leo
    PROGRESS IN PHOTOVOLTAICS, 2016, 24 (10): : 1368 - 1377
  • [35] Effect of Alpha-Particle Irradiation on InGaP/GaAs/Ge Triple-Junction Solar Cells
    Xu, Jing
    Guo, Min
    Lu, Ming
    He, Hu
    Yang, Guang
    Xu, Jianwen
    MATERIALS, 2018, 11 (06):
  • [36] Characteristics of high efficiency InGaP/InGaAs double junction solar cells grown on GaAs substrates
    Nguyen, H. P. T.
    Kim, K. H.
    Lim, H.
    Lee, J. J.
    INTERNATIONAL WORKSHOP ON ADVANCED MATERIAL FOR NEW AND RENEWABLE ENERGY, 2009, 1169 : 149 - 154
  • [37] Investigation of high-efficiency InGaP/GaAs tandem solar cells under concentration operation
    Yang, M.
    Takamoto, T.
    Ikeda, E.
    Kurita, H.
    Yamaguchi, M.
    Japanese Journal of Applied Physics, Part 2: Letters, 1998, 37 (07):
  • [38] High Efficiency and Radiation Resistant InGaP/GaAs//CIGS Stacked Solar Cells for Space Applications
    Kawakita, Shirou
    Imaizumi, Mitsuru
    Makita, Kikuo
    Nishinaga, Jiro
    Sugaya, Takeyoshi
    Shibata, Hajime
    Sato, Shin-ichiro
    Ohshima, Takeshi
    2016 IEEE 43RD PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2016, : 2574 - 2577
  • [39] Investigation of high-efficiency InGaP/GaAs tandem solar cells under concentration operation
    Yang, MJ
    Takamoto, T
    Ikeda, E
    Kurita, H
    Yamaguchi, M
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 1998, 37 (7B): : L836 - L838
  • [40] Computational analysis of the maximum power point for GaAs sub-cells in InGaP/GaAs/Ge triple-junction space solar cells
    Cappelletti, M. A.
    Cedola, A. P.
    Peltzer y Blanca, E. L.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2014, 29 (11)