Fractional Fourier transform of non-integer vortex beams

被引:0
|
作者
Zhao, Yaqin [1 ]
Zhong, Xin [1 ]
Ren, Guanghui [1 ]
Wu, Zhilu [1 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Heilongjiang, Peoples R China
关键词
orbital angular momentum; non-integer vortex beams; fractional Fourier transform; intensity distribution; phase distribution; ORBITAL ANGULAR-MOMENTUM; OPTICAL VORTICES; ROTATION;
D O I
10.1117/12.2187924
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Vortex beams possess orbital angular momentum(OAM). This work analyzes the properties of non-integer vortex beams when propagating through fractional Fourier planes. Based on the definition of fractional Fourier transform (FrFT), the theoretical formula is analyzed to discuss the effects of the parameters of non-integer vortex beams. Numerical results of the evolution of non-integer vortex beams through different fractional Fourier planes are illustrated. The results show that the fractional order of the FrFT has great influence on the normalized intensity distributions and the phase distributions of non-integer vortex beams. The beams show the same evolution trends, but different shapes.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] NON-INTEGER PULSE DIVISION
    不详
    CONTROL AND INSTRUMENTATION, 1980, 12 (10): : 21 - 21
  • [32] Developments in non-integer bases
    Erdos, P
    Komornik, V
    ACTA MATHEMATICA HUNGARICA, 1998, 79 (1-2) : 57 - 83
  • [33] Fractional Fourier transform for annular flat-topped beams
    唐斌
    金铱
    蒋美萍
    Optoelectronics Letters, 2010, 6 (01) : 72 - 76
  • [34] Fractional Fourier transform of hollow sinh-Gaussian beams
    Wang, Xun
    Liu, Zhirong
    Zhao, Daomu
    OPTICAL ENGINEERING, 2014, 53 (08)
  • [35] Fractional Fourier transform for beams generated by Gaussian mirror resonator
    Tang, Bin
    Xu, Minghua
    JOURNAL OF MODERN OPTICS, 2009, 56 (11) : 1276 - 1282
  • [36] Fractional Fourier transform for annular flat-topped beams
    Tang B.
    Jin Y.
    Jiang M.-P.
    Optoelectronics Letters, 2010, 6 (1) : 72 - 76
  • [37] Developments in Non-Integer Bases
    P. Erdös
    V. Komornik
    Acta Mathematica Hungarica, 1998, 79 : 57 - 83
  • [38] Probing non-integer dimensions
    Krapivsky, P. L.
    Redner, S.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (06)
  • [39] Biomaterials in non-integer dimensions
    Young, Iris D.
    Fraser, James S.
    NATURE CHEMISTRY, 2019, 11 (07) : 599 - 600
  • [40] Non-integer OAM beam shifts of Hermite-Laguerre-Gaussian beams
    Nugrowati, A. M.
    Woerdman, J. P.
    OPTICS COMMUNICATIONS, 2013, 308 : 253 - 255