The antipode of the noncrossing partition lattice

被引:2
|
作者
Ehrenberg, Richard [1 ]
Happ, Alex [2 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
[2] Christian Bros Univ, Dept Math, Memphis, TN 38104 USA
关键词
Incidence Hopf algebra; Noncrossing hypertree; Ordered partition; Permutahedron; Euler characteristic with compact support;
D O I
10.1016/j.aam.2019.03.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the cancellation-free formula for the antipode of the noncrossing partition lattice in the reduced incidence Hopf algebra of posets due to Einziger. The proof is based on a map from chains in the noncrossing partition lattice to noncrossing hypertrees and expressing the alternating sum over these fibers as an Euler characteristic. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:76 / 85
页数:10
相关论文
共 50 条
  • [31] LARGE ANTICHAINS IN THE PARTITION LATTICE
    CANFIELD, ER
    HARPER, LH
    RANDOM STRUCTURES & ALGORITHMS, 1995, 6 (01) : 89 - 104
  • [32] On the partition lattice of all integers
    Baransky, Vitaly A.
    Koroleva, Tatyana A.
    Senchonok, Tatiana A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2016, 13 : 744 - 753
  • [33] Mobius function on the partition lattice
    Callan, D
    Stong, R
    AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (04): : 372 - 374
  • [34] On the metrization of the infinite partition lattice
    Mezo, Istvan
    TOPOLOGY AND ITS APPLICATIONS, 2024, 342
  • [35] Announcing the Antipode Foundation The Antipode Editorial Collective
    Chatterton, Paul
    Gidwani, Vinay
    Heynen, Nik
    Kent, Andy
    Larner, Wendy
    Pain, Rachel
    ANTIPODE, 2012, 44 (02) : 277 - 280
  • [36] ANTIPODE
    DOHERTY, J
    AREA, 1990, 22 (02) : 209 - 210
  • [37] The granular partition lattice of an information table
    Chiaselotti, Giampiero
    Ciucci, Davide
    Gentile, Tommaso
    Infusino, Federico G.
    INFORMATION SCIENCES, 2016, 373 : 57 - 78
  • [38] A natural extension of the Young partition lattice
    Bisi, Cinzia
    Chiaselotti, Giampiero
    Marino, Giuseppe
    Oliverio, Paolo Antonio
    ADVANCES IN GEOMETRY, 2015, 15 (03) : 263 - 280
  • [39] Lattice partition recovery with dyadic CART
    Padilla, Oscar Hernan Madrid
    Yu, Yi
    Rinaldo, Alessandro
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [40] COUNTING COMPLEMENTS IN THE PARTITION LATTICE, AND HYPERTREES
    GRIESER, D
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1991, 57 (01) : 144 - 150