Strategy for Controlling the Electrical Conductivity of Indium Tin Oxide (ITO) Nanobranches

被引:3
|
作者
Lee, Dong Kyu [1 ,2 ]
Choi, Kyoung Soon [3 ]
Lee, Jaeyeong [1 ,2 ]
Kim, Youngho [1 ]
Oh, Sein [1 ]
Shin, Hojun [1 ]
Jeon, Cheolho [3 ]
Yu, Hak Ki [1 ,2 ]
机构
[1] Ajou Univ, Dept Mat Sci & Engn, Suwon 16499, South Korea
[2] Ajou Univ, Dept Energy Syst Res Ajou, Suwon 16499, South Korea
[3] Korea Basic Sci Inst, Adv Nano Surface Res Grp, Daejeon 34144, South Korea
来源
ADVANCED ELECTRONIC MATERIALS | 2019年 / 5卷 / 07期
基金
新加坡国家研究基金会;
关键词
heterojunction decoration; indium tin oxide (ITO) nanostructures; yttria-stabilized zirconia (YSZ) substrates; THIN-FILMS; NANOWIRE ARRAYS; METAL-OXIDES; GAS SENSORS; ANODE;
D O I
10.1002/aelm.201900246
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The electronic properties of indium tin oxide (ITO) nanobranches fabricated by electron beam evaporation are controlled using the following two methods: i) The growth direction of the rods and branches is controlled by an epitaxial relationship with a yttria-stabilized zirconia substrate. The aligned growth of ITO nanobranches causes low sheet resistance because of the high density and good connectivity of the branches. ii) Heterojunction metal-oxide nanoparticles are coated on the surface of the nanobranches to form a depletion region in the near surface for band bending. The morphology of the metal oxide also affects the electronic properties of the nanobranches. The sheet resistance of Fe2O3-coated nanobranches (Fe2O3: film shape) increases linearly with the number of coatings. In the case of Mn2O3 (Mn2O3: nanoparticle shape), the sheet resistance is dramatically increased and saturated with the increase in the number of coatings.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Modification of indium-tin oxide(ITO) electrodes with aziridine.
    Kim, CO
    Hong, SY
    Kim, BS
    Kim, MJ
    Park, JW
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 224 : U136 - U136
  • [42] Studies on the electrochemiluminescent behavior of luminol on indium tin oxide (ITO) glass
    Guo, Wenying
    Li, Jingjing
    Chu, Haihong
    Yan, Jilin
    Tu, Yifeng
    JOURNAL OF LUMINESCENCE, 2010, 130 (11) : 2022 - 2025
  • [43] Ferromagnetism in indium tin-oxide (ITO) electrodes at room temperature
    Majumdar, Himadri S.
    Majumdar, Sayani
    Tobjork, Daniel
    Osterbacka, Ronald
    SYNTHETIC METALS, 2010, 160 (3-4) : 303 - 306
  • [44] Electrical stimulation of cultured neurons using a simply patterned indium-tin-oxide (ITO) glass electrode
    Tanamoto, Ryo
    Shindo, Yutaka
    Miki, Norihisa
    Matsumoto, Yoshinori
    Hotta, Kohji
    Oka, Kotaro
    JOURNAL OF NEUROSCIENCE METHODS, 2015, 253 : 272 - 278
  • [46] Controlled synthesis of tin-doped indium oxide (ITO) nanowires
    Li, Luping
    Chen, Shikai
    Kim, Jung
    Xu, Cheng
    Zhao, Yang
    Ziegler, Kirk J.
    JOURNAL OF CRYSTAL GROWTH, 2015, 413 : 31 - 36
  • [47] Sintering of tin-doped indium oxide (Indium-Tin-Oxide, ITO) with Bi2O3 additive
    M. MURAOKA
    M. SUZUKI
    Y. SAWADA†
    J. MATSUSHITA
    Journal of Materials Science, 1998, 33 : 5621 - 5624
  • [48] CHARACTERIZATION AND ESTIMATION OF ITO (INDIUM-TIN-OXIDE) BY MOSSBAUER SPECTROMETRY
    NOMURA, K
    UJIHIRA, Y
    TANAKA, S
    MATSUMOTO, K
    HYPERFINE INTERACTIONS, 1988, 42 (1-4): : 1207 - 1210
  • [49] FORMATION OF INDIUM TIN OXIDE (ITO) FILMS BY THE DYNAMIC MIXING METHOD
    NAKANE, Y
    MASUTA, H
    HONDA, Y
    FUJIMOTO, F
    MIYAZAKI, T
    YANO, S
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1991, 59 : 264 - 267
  • [50] Preparation of indium tin oxide (ITO) with a single-phase structure
    Tang, SC
    Yao, JS
    Chen, J
    Luo, JG
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2003, 137 (1-3) : 82 - 85