Strategy for Controlling the Electrical Conductivity of Indium Tin Oxide (ITO) Nanobranches

被引:3
|
作者
Lee, Dong Kyu [1 ,2 ]
Choi, Kyoung Soon [3 ]
Lee, Jaeyeong [1 ,2 ]
Kim, Youngho [1 ]
Oh, Sein [1 ]
Shin, Hojun [1 ]
Jeon, Cheolho [3 ]
Yu, Hak Ki [1 ,2 ]
机构
[1] Ajou Univ, Dept Mat Sci & Engn, Suwon 16499, South Korea
[2] Ajou Univ, Dept Energy Syst Res Ajou, Suwon 16499, South Korea
[3] Korea Basic Sci Inst, Adv Nano Surface Res Grp, Daejeon 34144, South Korea
来源
ADVANCED ELECTRONIC MATERIALS | 2019年 / 5卷 / 07期
基金
新加坡国家研究基金会;
关键词
heterojunction decoration; indium tin oxide (ITO) nanostructures; yttria-stabilized zirconia (YSZ) substrates; THIN-FILMS; NANOWIRE ARRAYS; METAL-OXIDES; GAS SENSORS; ANODE;
D O I
10.1002/aelm.201900246
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The electronic properties of indium tin oxide (ITO) nanobranches fabricated by electron beam evaporation are controlled using the following two methods: i) The growth direction of the rods and branches is controlled by an epitaxial relationship with a yttria-stabilized zirconia substrate. The aligned growth of ITO nanobranches causes low sheet resistance because of the high density and good connectivity of the branches. ii) Heterojunction metal-oxide nanoparticles are coated on the surface of the nanobranches to form a depletion region in the near surface for band bending. The morphology of the metal oxide also affects the electronic properties of the nanobranches. The sheet resistance of Fe2O3-coated nanobranches (Fe2O3: film shape) increases linearly with the number of coatings. In the case of Mn2O3 (Mn2O3: nanoparticle shape), the sheet resistance is dramatically increased and saturated with the increase in the number of coatings.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Electrical conductivity enhancement of indium tin oxide (ITO) thin films reactively sputtered in a hydrogen plasma
    M. F. Al-Kuhaili
    Journal of Materials Science: Materials in Electronics, 2020, 31 : 2729 - 2740
  • [2] Electrical conductivity enhancement of indium tin oxide (ITO) thin films reactively sputtered in a hydrogen plasma
    Al-Kuhaili, M. F.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (04) : 2729 - 2740
  • [3] Fabrication of Indium Tin Oxide Nanostructures by Electrospinning and Their Electrical Conductivity
    Ren Xin-Chuan
    Liu Su-Ting
    Li Zhi-Hui
    Song Cheng-Kun
    Dai Yun-Qian
    Sun Yue-Ming
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2021, 37 (03) : 491 - 498
  • [4] Metal-insulator transition in tin doped indium oxide (ITO) thin films: Quantum correction to the electrical conductivity
    Kaushik, Deepak Kumar
    Kumar, K. Uday
    Subrahmanyam, A.
    AIP ADVANCES, 2017, 7 (01)
  • [5] Mesoporous indium tin oxide (ITO) films
    Pohl, Annika
    Dunn, Bruce
    THIN SOLID FILMS, 2006, 515 (02) : 790 - 792
  • [6] Broadband terahertz conductivity and optical transmission of indium-tin-oxide (ITO) nanomaterials
    Yang, Chan-Shan
    Chang, Chan-Ming
    Chen, Po-Han
    Yu, Peichen
    Pan, Ci-Ling
    OPTICS EXPRESS, 2013, 21 (14): : 16670 - 16682
  • [7] Antireflective indium-tin-oxide nanobranches for efficient organic solar cells
    Ham, Juyoung
    Park, Jae Yong
    Dong, Wan Jae
    Jung, Gwan Ho
    Yu, Hak Ki
    Lee, Jong-Lam
    APPLIED PHYSICS LETTERS, 2016, 108 (07)
  • [8] Enhanced electrical conductivity of indium tin oxide films by Ag addition
    Suzuki, Masakazu
    Maeda, Yoriko
    Sawada, Yutaka
    Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers, 1998, 37 (01): : 34 - 38
  • [9] Enhanced electrical conductivity of indium tin oxide films by Ag addition
    Suzuki, M
    Maeda, Y
    Sawada, Y
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1998, 37 (01): : 34 - 38
  • [10] Fabrication, electrical and optical properties of silver, indium tin oxide (ITO), and indium zinc oxide (IZO) nanostructure arrays
    Khosroabadi, Akram A.
    Gangopadhyay, Palash
    Binh Duong
    Thomas, Jayan
    Sigdel, Ajaya K.
    Berry, Joseph J.
    Gennett, Thomas
    Peyghambarian, N.
    Norwood, Robert A.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2013, 210 (05): : 831 - 838