Automated voxelization of 3D atom probe data through kernel density estimation

被引:5
|
作者
Srinivasan, Srikant [1 ]
Kaluskar, Kaustubh [1 ]
Dumpala, Santoshrupa [1 ]
Broderick, Scott [1 ]
Rajan, Krishna [1 ]
机构
[1] Iowa State Univ, Dept Mat Sci & Engn, Inst Combinatorial Discovery, Ames, IA 50011 USA
关键词
APT; Informatics; Kernel density estimation; Interfaces; Ni Alloy;
D O I
10.1016/j.ultramic.2015.03.012
中图分类号
TH742 [显微镜];
学科分类号
摘要
Identifying nanoscale chemical features from atom probe tomography (APT) data routinely involves adjustment of voxel size as an input parameter, through visual supervision, making the final outcome user dependent, reliant on heuristic knowledge and potentially prone to error. This work utilizes Kernel density estimators to select an optimal voxel size in an unsupervised manner to perform feature selection, in particular targeting resolution of interfacial features and chemistries. The capability of this approach is demonstrated through analysis of the gamma / gamma' interface in a Ni-Al-Cr superalloy. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:381 / 386
页数:6
相关论文
共 50 条
  • [21] Analyzing infant head flatness and asymmetry using kernel density estimation of directional surface data from a craniofacial 3D model
    Vuollo, Ville
    Holmstrom, Lasse
    Aarnivala, Henri
    Harila, Virpi
    Heikkinen, Tuomo
    Pirttiniemi, Pertti
    Valkama, Arja Marita
    STATISTICS IN MEDICINE, 2016, 35 (26) : 4891 - 4904
  • [22] 3D Electron Density Estimation in the Ionosphere
    Tuna, Hakan
    Arikan, Orhan
    Arikan, Feza
    2014 22ND SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2014, : 529 - 532
  • [23] Visualization of computable scalar 3D field using cubic interpolation or kernel density estimation function
    Opila, J.
    Opila, G.
    2018 41ST INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2018, : 189 - 194
  • [24] Gaussian kernel density functions for compositional quantification in atom probe tomography
    Hernandez-Saz, J.
    Pizarro, J.
    Herrera, M.
    Molina, S. I.
    Galindo, P. L.
    MATERIALS CHARACTERIZATION, 2018, 139 : 63 - 69
  • [25] 3D nanostructural characterisation of grain boundaries in atom probe data utilising machine learning methods
    Wei, Ye
    Peng, Zirong
    Kuhbach, Markus
    Breen, Andrew
    Legros, Marc
    Larranaga, Melvyn
    Mompiou, Frederic
    Gault, Baptiste
    PLOS ONE, 2019, 14 (11):
  • [26] 3D Object Detection in Substation Scene Based on Voxelization
    Wang, Dawei
    Hu, Fan
    Zhang, Na
    Yang, Gang
    Lu, Jiyuan
    Zhang, Xingzhong
    Computer Engineering and Applications, 2024, 60 (11) : 328 - 335
  • [27] PROMETHEE IV through kernel density estimation
    Melo Albuquerque, Pedro Henrique
    Montenegro, Mariana Rosa
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (18) : 5355 - 5362
  • [28] Fair Selection through Kernel Density Estimation
    Jiang, Xiangyu
    Dai, Yucong
    Wu, Yongkai
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [29] Applications of a versatile modelling approach to 3D atom probe simulations
    Oberdorfer, Christian
    Eich, Sebastian Manuel
    Luetkemeyer, Martin
    Schmitz, Guido
    ULTRAMICROSCOPY, 2015, 159 : 184 - 194
  • [30] 3D atom probe investigation of (Fe/Dy) magnetic multilayers
    Tamion, A.
    Cadel, E.
    Bordel, C.
    Blavette, D.
    SURFACE AND INTERFACE ANALYSIS, 2007, 39 (2-3) : 237 - 239