Fan-Type Conditions for Spanning Eulerian Subgraphs

被引:1
|
作者
Chen, Wei-Guo [1 ]
Chen, Zhi-Hong [2 ]
机构
[1] Guangdong Econ Informat Ctr, Guangzhou, Guangdong, Peoples R China
[2] Butler Univ, Indianapolis, IN 46208 USA
关键词
Spanning Eulerian subgraphs; Reduction method; Fan-Type condition; COLLAPSIBLE GRAPHS;
D O I
10.1007/s00373-014-1511-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G, let dF (G) = min{max{d(u), d(v)}| for any u, v. V(G) with distance 2}. A graph is supereulerian if it has a spanning Eulerian subgraph. Let p > 0, g > 2 and be given nonnegative numbers. Let Q be the family of nonsupereulerian graphs with order at most 5(p -2). In this paper, we prove that for a 3-edge-connected graph G of order n, if G satisfies a Fan-type condition dF (G) = n (g-2) p - and n is sufficiently large, then G is supereulerian if and only if G is not contractible to a graph inQ. Results on best possible values of p and for such graphs to either be supereulerian or be contractible to the Petersen graph are given.
引用
收藏
页码:2087 / 2102
页数:16
相关论文
共 50 条
  • [21] Ore- and Fan-type heavy subgraphs for Hamiltonicity of 2-connected graphs
    Ning, Bo
    Zhang, Shenggui
    DISCRETE MATHEMATICS, 2013, 313 (17) : 1715 - 1725
  • [22] A fan-type condition for cyclability
    Zhang, YQ
    Chen, YJ
    DISCRETE MATHEMATICS, 2005, 305 (1-3) : 323 - 336
  • [23] Hamiltonicity of claw-free graphs and Fan-type conditions
    Chen, Zhi-Hong
    DISCRETE MATHEMATICS, 2019, 342 (04) : 1066 - 1078
  • [24] Fan-type implicit-heavy subgraphs for hamiltonicity of implicit claw-heavy graphs
    Cai, Junqing
    Zhang, Yuzhong
    INFORMATION PROCESSING LETTERS, 2016, 116 (11) : 668 - 673
  • [25] A Theory of Fan-Type Dissociation
    Camper, Martin
    PHILOSOPHY AND RHETORIC, 2020, 53 (04) : 433 - 449
  • [26] SPANNING EULERIAN SUBGRAPHS, THE SPLITTING LEMMA, AND PETERSEN THEOREM
    FLEISCHNER, H
    DISCRETE MATHEMATICS, 1992, 101 (1-3) : 33 - 37
  • [27] Hamilton cycles in claw-heavy graphs with Fan-type condition restricted to two induced subgraphs
    Huang, Xing
    ARS COMBINATORIA, 2015, 121 : 321 - 328
  • [28] A fan-type result for regular factors
    Niessen, T
    ARS COMBINATORIA, 1997, 46 : 277 - 285
  • [29] Spanning Eulerian Subgraphs of 2-Edge-Connected Graphs
    Xiangwen Li
    Chunxiang Wang
    Qiong Fan
    Zhaohong Niu
    Liming Xiong
    Graphs and Combinatorics, 2013, 29 : 275 - 280
  • [30] Spanning Eulerian Subgraphs of 2-Edge-Connected Graphs
    Li, Xiangwen
    Wang, Chunxiang
    Fan, Qiong
    Niu, Zhaohong
    Xiong, Liming
    GRAPHS AND COMBINATORICS, 2013, 29 (02) : 275 - 280