Fan-Type Conditions for Spanning Eulerian Subgraphs

被引:1
|
作者
Chen, Wei-Guo [1 ]
Chen, Zhi-Hong [2 ]
机构
[1] Guangdong Econ Informat Ctr, Guangzhou, Guangdong, Peoples R China
[2] Butler Univ, Indianapolis, IN 46208 USA
关键词
Spanning Eulerian subgraphs; Reduction method; Fan-Type condition; COLLAPSIBLE GRAPHS;
D O I
10.1007/s00373-014-1511-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G, let dF (G) = min{max{d(u), d(v)}| for any u, v. V(G) with distance 2}. A graph is supereulerian if it has a spanning Eulerian subgraph. Let p > 0, g > 2 and be given nonnegative numbers. Let Q be the family of nonsupereulerian graphs with order at most 5(p -2). In this paper, we prove that for a 3-edge-connected graph G of order n, if G satisfies a Fan-type condition dF (G) = n (g-2) p - and n is sufficiently large, then G is supereulerian if and only if G is not contractible to a graph inQ. Results on best possible values of p and for such graphs to either be supereulerian or be contractible to the Petersen graph are given.
引用
收藏
页码:2087 / 2102
页数:16
相关论文
共 50 条
  • [1] Fan-Type Conditions for Spanning Eulerian Subgraphs
    Wei-Guo Chen
    Zhi-Hong Chen
    Graphs and Combinatorics, 2015, 31 : 2087 - 2102
  • [2] Fan-type conditions for collapsible graphs
    Chen, ZH
    ARS COMBINATORIA, 1998, 50 : 81 - 95
  • [3] SPANNING SUBGRAPHS OF EULERIAN GRAPHS
    BOESCH, FT
    SUFFEL, C
    TINDELL, R
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (02): : A302 - A302
  • [4] ON FINDING SPANNING EULERIAN SUBGRAPHS
    RICHEY, MB
    PARKER, RG
    RARDIN, RL
    NAVAL RESEARCH LOGISTICS, 1985, 32 (03) : 443 - 455
  • [5] SPANNING EULERIAN SUBGRAPHS AND MATCHINGS
    CATLIN, PA
    DISCRETE MATHEMATICS, 1989, 76 (02) : 95 - 116
  • [6] Spanning Eulerian Subgraphs of Large Size
    Haghparast, Nastaran
    Kiani, Dariush
    GRAPHS AND COMBINATORICS, 2019, 35 (01) : 201 - 206
  • [7] Spanning Eulerian Subgraphs in Generalized Prisms
    Li, Xiaomin
    Li, Dengxin
    Lai, Hong-jian
    ARS COMBINATORIA, 2012, 106 : 305 - 312
  • [8] ON GRAPHS ADMITTING SPANNING EULERIAN SUBGRAPHS
    PAULRAJA, P
    ARS COMBINATORIA, 1987, 24 : 57 - 65
  • [9] A DEGREE CONDITION FOR SPANNING EULERIAN SUBGRAPHS
    CHEN, ZH
    JOURNAL OF GRAPH THEORY, 1993, 17 (01) : 5 - 21
  • [10] Spanning Eulerian Subgraphs of Large Size
    Nastaran Haghparast
    Dariush Kiani
    Graphs and Combinatorics, 2019, 35 : 201 - 206