Automatic glottal inverse filtering with the Markov chain Monte Carlo method

被引:8
|
作者
Auvinen, Harri [1 ]
Raitio, Tuomo [2 ]
Airaksinen, Manu [2 ]
Siltanen, Samuli [1 ]
Story, Brad H. [3 ]
Alku, Paavo [2 ]
机构
[1] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
[2] Aalto Univ, Dept Signal Proc & Acoust, Espoo, Finland
[3] Univ Arizona, Dept Speech & Hearing Sci, Tucson, AZ 85721 USA
来源
COMPUTER SPEECH AND LANGUAGE | 2014年 / 28卷 / 05期
基金
芬兰科学院;
关键词
Glottal inverse filtering; Markov chain Monte Carlo; JOINT ESTIMATION; GIBBS SAMPLER; VOICE SOURCE; VOCAL-TRACT; SPEECH; QUALITY; SYSTEM; MODEL; FLOW;
D O I
10.1016/j.csl.2013.09.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new glottal inverse filtering (GIF) method that utilizes a Markov chain Monte Carlo (MCMC) algorithm. First, initial estimates of the vocal tract and glottal flow are evaluated by an existing GIF method, iterative adaptive inverse filtering (IAIF). Simultaneously, the initially estimated glottal flow is synthesized using the Rosenberg-Klatt (RK) model and filtered with the estimated vocal tract filter to create a synthetic speech frame. In the MCMC estimation process, the first few poles of the initial vocal tract model and the RK excitation parameter are refined in order to minimize the error between the synthetic and original speech signals in the time and frequency domain. MCMC approximates the posterior distribution of the parameters, and the final estimate of the vocal tract is found by averaging the parameter values of the Markov chain. Experiments with synthetic vowels produced by a physical modeling approach show that the MCMC-based GIF method gives more accurate results compared to two known reference methods. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1139 / 1155
页数:17
相关论文
共 50 条
  • [1] Utilizing Markov Chain Monte Carlo (MCMC) Method for Improved Glottal Inverse Filtering
    Auvinen, Harri
    Raitio, Tuomo
    Siltanen, Samuli
    Alku, Paavo
    13TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2012 (INTERSPEECH 2012), VOLS 1-3, 2012, : 1638 - +
  • [2] A Markov chain Monte Carlo method for the groundwater inverse problem
    Lu, ZM
    Higdon, D
    Zhang, DX
    Computational Methods in Water Resources, Vols 1 and 2, 2004, 55 : 1273 - 1283
  • [3] Validation of nonlinear inverse algorithms with Markov chain Monte Carlo method
    Tamminen, J
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D19) : D193031 - 21
  • [4] A Blocking Markov Chain Monte Carlo Method for Inverse Stochastic Hydrogeological Modeling
    Fu, Jianlin
    Gomez-Hernandez, J. Jaime
    MATHEMATICAL GEOSCIENCES, 2009, 41 (02) : 105 - 128
  • [5] A Blocking Markov Chain Monte Carlo Method for Inverse Stochastic Hydrogeological Modeling
    Jianlin Fu
    J. Jaime Gómez-Hernández
    Mathematical Geosciences, 2009, 41
  • [6] On the Markov Chain Monte Carlo (MCMC) method
    Rajeeva L. Karandikar
    Sadhana, 2006, 31 : 81 - 104
  • [7] On the Markov Chain Monte Carlo (MCMC) method
    Karandikar, RL
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2006, 31 (2): : 81 - 104
  • [8] An introduction to the Markov chain Monte Carlo method
    Wang, Wenlong
    AMERICAN JOURNAL OF PHYSICS, 2022, 90 (12) : 921 - 934
  • [9] INVESTIGATION OF GLOTTAL WAVESHAPE BY AUTOMATIC INVERSE FILTERING
    MILLER, JE
    MATHEWS, MV
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1963, 35 (11): : 1876 - &
  • [10] A Novel Method of Glottal Inverse Filtering
    Sahoo, Subhasmita
    Routray, Aurobinda
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2016, 24 (07) : 1230 - 1241