Fourier-Mukai transform on abelian surfaces

被引:15
|
作者
Yoshioka, Kota [1 ]
机构
[1] Kobe Univ, Fac Sci, Dept Math, Kobe, Hyogo 657, Japan
关键词
TWISTED STABILITY; STABLE SHEAVES; EQUIVALENCES; K3;
D O I
10.1007/s00208-009-0356-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study moduli spaces of stable sheaves on abelian surfaces whose Mukai vectors are related by a cohomological Fourier-Mukai transform. We show that there is a Fourier-Mukai transform inducing a birational map between them.
引用
收藏
页码:493 / 524
页数:32
相关论文
共 50 条
  • [21] Black string entropy and Fourier-Mukai transform
    Bena, Iosif
    Diaconescu, Duiliu-Emanuel
    Florea, Bogdan
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (04):
  • [22] SYMPLECTIC BIEXTENSIONS AND A GENERALIZATION OF THE FOURIER-MUKAI TRANSFORM
    Polishchuk, A.
    MATHEMATICAL RESEARCH LETTERS, 1996, 3 (06) : 813 - 828
  • [23] A Fourier-Mukai transform for real torus bundles
    Glazebrook, JF
    Jardim, M
    Kamber, FW
    JOURNAL OF GEOMETRY AND PHYSICS, 2004, 50 (1-4) : 360 - 392
  • [24] Torelli theorem via Fourier-Mukai transform
    Beilinson, A
    Polishchuk, A
    MODULI OF ABELIAN VARIETIES, 2000, 195 : 127 - 132
  • [25] Baum-Connes and the Fourier-Mukai transform
    Emerson, Heath
    Hudson, Daniel
    ILLINOIS JOURNAL OF MATHEMATICS, 2022, 66 (01) : 31 - 57
  • [26] M-regularity and the Fourier-Mukai transform
    Pareschi, Giuseppe
    Popa, Mihnea
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2008, 4 (03) : 587 - 611
  • [27] The real Fourier-Mukai transform of Cayley cycles
    Kawai, Kotaro
    Yamamoto, Hikaru
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2021, 17 (05) : 1861 - 1898
  • [28] Twisted Fourier-Mukai partners of Enriques surfaces
    Addington, Nicolas
    Wray, Andrew
    MATHEMATISCHE ZEITSCHRIFT, 2021, 297 (3-4) : 1239 - 1247
  • [29] Twisted stability and Fourier-Mukai transform II
    Kōta Yoshioka
    manuscripta mathematica, 2003, 110 : 433 - 465
  • [30] FOURIER-MUKAI PARTNERS OF ELLIPTIC RULED SURFACES
    Uehara, Hokuto
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (08) : 3221 - 3232