Scattering theory for the Schrodinger-Debye system

被引:0
|
作者
Correia, Simao [1 ,2 ]
Oliveira, Filipe [3 ,4 ]
机构
[1] Univ Lisbon, CMAF CIO, Campo Grande,Edifi Cio C6,Piso 2, P-1749016 Lisbon, Portugal
[2] Univ Lisbon, FCUL, Campo Grande,Edifi Cio C6,Piso 2, P-1749016 Lisbon, Portugal
[3] Univ Lisbon, Math Dept, ISEG, Rua Quelhas 6, P-1200781 Lisbon, Portugal
[4] Univ Lisbon, CEMAPRE, ISEG, Rua Quelhas 6, P-1200781 Lisbon, Portugal
关键词
scattering theory; Schrodinger-Debye; global existence; NONLINEAR SCHRODINGER; WELL-POSEDNESS; EQUATIONS; TIME;
D O I
10.1088/1361-6544/aaba33
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Schrodin er-Debye system over R-d {iu(t) + 1/2 Delta u = uv, (mu v)t + v = lambda vertical bar u vertical bar(2) and establish the global existence and scattering of small solutions for initial data in several function spaces in dimensions d = 2,3,4. Moreover, in dimension d = 1, we prove a Hayashi-Naumkin modified scattering result.
引用
收藏
页码:3203 / 3227
页数:25
相关论文
共 50 条
  • [41] Scattering theory approach to random Schrodinger operators in one dimension
    Kostrykin, V
    Schrader, R
    REVIEWS IN MATHEMATICAL PHYSICS, 1999, 11 (02) : 187 - 242
  • [42] Perturbation theory for the one-dimensional Schrodinger scattering problem
    Pupyshev, VV
    THEORETICAL AND MATHEMATICAL PHYSICS, 1995, 105 (01) : 1210 - 1223
  • [43] SPECTRAL AND SCATTERING THEORY OF SCHRODINGER OPERATORS RELATED TO STARK EFFECT
    AVRON, JE
    HERBST, IW
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 52 (03) : 239 - 254
  • [44] SCATTERING OF QUANTIZED SOLITONS IN NON-LINEAR SCHRODINGER THEORY
    SCHLINDWEIN, M
    ACTA PHYSICA AUSTRIACA, 1977, : 429 - 444
  • [45] Scattering theory for the defocusing fourth-order Schrodinger equation
    Miao, Changxing
    Zheng, Jiqiang
    NONLINEARITY, 2016, 29 (02) : 692 - 736
  • [46] Debye theory analysis of the scattering intensity and refractive index measurement for glass beads
    Li, Shuiyan
    Li, Dahai
    Zhao, Jiwen
    E, Kewei
    Zhang, Chong
    Guo, Donghua
    Wang, Qionghua
    Zhongguo Jiguang/Chinese Journal of Lasers, 2014, 41
  • [47] SMALL DATA SCATTERING FOR A SYSTEM OF NONLINEAR SCHRODINGER EQUATIONS
    Hayashi, Nakao
    Li, Chunhua
    Ozawa, Tohru
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2011, 3 (03): : 415 - 426
  • [48] Scattering of an inhomogeneous coupled Schrodinger system in the conformal space
    Saanouni, Tarek
    Peng, Congming
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2023,
  • [49] Scattering threshold for the focusing coupled Schrodinger system revisited
    Saanouni, Tarek
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 28 (04):
  • [50] Scattering threshold for a coupled focusing nonlinear Schrodinger system
    Saanouni, T.
    APPLICABLE ANALYSIS, 2022, 101 (07) : 2418 - 2445