Gauge theory and the division algebras

被引:16
|
作者
Figueroa-O'Farrill, JM [1 ]
机构
[1] Queen Mary Univ London, Dept Phys, London E1 4NS, England
基金
英国工程与自然科学研究理事会;
关键词
gauge theory; division algebra;
D O I
10.1016/S0393-0440(99)00028-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a novel formulation of the instanton equations in eight-dimensional Yang-Mills theory. This formulation reveals these equations as the last member of a series of gauge-theoretical equations associated with the real division algebras, including flatness in dimension 2 and (anti-)self-duality in 4. Using this formulation we prove that (in flat space) these equations can be understood in terms of moment maps on the space of connections and the moduli space of solutions is obtained via a generalised symplectic quotient: a Kahler quotient in dimension 2, a hyperkahler quotient in dimension 4 and an octonionic Kahler quotient in dimension 8. One can extend these equations to curved space: whereas the two-dimensional equations make sense on any surface, and the four-dimensional equations make sense on an arbitrary oriented manifold, the eight-dimensional equations only make sense for manifolds whose holonomy is contained in Spin(7). The interpretation of the equations in terms of moment maps further constraints the manifolds: the surface must be oriented, the 4-manifold must be hyperkahler and the 8-manifold must be flat. (C) 1999 Elsevier Science B.V. ALI right reserved. Subj. Class.: Quantum field theory 1991 MSC: 81T13.
引用
收藏
页码:227 / 240
页数:14
相关论文
共 50 条
  • [21] A NEW GAUGE-THEORY FOR W-TYPE ALGEBRAS
    SCHOUTENS, K
    SEVRIN, A
    VANNIEUWENHUIZEN, P
    PHYSICS LETTERS B, 1990, 243 (03) : 245 - 249
  • [22] Local operator algebras of charged states in gauge theory and gravity
    P. A. Grassi
    M. Porrati
    Journal of High Energy Physics, 2025 (3)
  • [23] Quantum toroidal algebras and solvable structures in gauge/string theory
    Matsuo, Yutaka
    Nawata, Satoshi
    Noshita, Go
    Zhu, Rui-Dong
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2024, 1055 : 1 - 144
  • [24] BRS ALGEBRAS - ANALYSIS OF THE CONSISTENCY EQUATIONS IN GAUGE-THEORY
    DUBOISVIOLETTE, M
    TALON, M
    VIALLET, CM
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 102 (01) : 105 - 122
  • [25] About division quaternion algebras and division symbol algebras
    Savin, Diana
    CARPATHIAN JOURNAL OF MATHEMATICS, 2016, 32 (02) : 233 - 240
  • [26] On the K-theory of division algebras over local fields
    Hesselholt, Lars
    Larsen, Michael
    Lindenstrauss, Ayelet
    INVENTIONES MATHEMATICAE, 2020, 219 (01) : 281 - 329
  • [27] On the K-theory of division algebras over local fields
    Lars Hesselholt
    Michael Larsen
    Ayelet Lindenstrauss
    Inventiones mathematicae, 2020, 219 : 281 - 329
  • [28] Division algebras
    Rowen, LH
    PROCEEDINGS OF THE THIRD INTERNATIONAL ALGEBRA CONFERENCE, 2003, : 221 - 233
  • [29] On division algebras
    Hazlett, O. C.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1930, 32 (1-4) : 912 - 925
  • [30] On division algebras
    Wedderburn, J. H. M.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1921, 22 (1-4) : 129 - 135