Capturing non-Markovian dynamics on near-term quantum computers

被引:55
|
作者
Head-Marsden, Kade [1 ]
Krastanov, Stefan [1 ,2 ]
Mazziotti, David A. [3 ,4 ]
Narang, Prineha [1 ]
机构
[1] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[3] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[4] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 01期
基金
美国国家科学基金会;
关键词
!text type='PYTHON']PYTHON[!/text] FRAMEWORK; QUTIP;
D O I
10.1103/PhysRevResearch.3.013182
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
With the rapid progress in quantum hardware, there has been an increased interest in new quantum algorithms to describe complex many-body systems searching for the still-elusive goal of "useful quantum advantage." Surprisingly, quantum algorithms for the treatment of open quantum systems (OQSs) have remained under-explored, in part due to the inherent challenges of mapping non-unitary evolution into the framework of unitary gates. Evolving an open system unitarily necessitates dilation into a new effective system to incorporate critical environmental degrees of freedom. In this context, we present and validate a new quantum algorithm to treat non-Markovian dynamics in OQSs built on the ensemble of Lindblad's trajectories approach, invoking the Sz.-Nagy dilation theorem. Here we demonstrate our algorithm on the Jaynes-Cummings model in the strong-coupling and detuned regimes, relevant in quantum optics and driven quantum system studies. This algorithm, a key step towards generalized modeling of non-Markovian dynamics on a noisy-quantum device, captures a broad class of dynamics and opens up a new direction in OQS problems.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Quantum dynamics in a tiered non-Markovian environment
    Fruchtman, Amir
    Lovett, Brendon W.
    Benjamin, Simon C.
    Gauger, Erik M.
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [32] Dynamical learning of non-Markovian quantum dynamics
    Yang, Jintao
    Cao, Junpeng
    Yang, Wen-Li
    CHINESE PHYSICS B, 2022, 31 (01)
  • [33] Non-Markovian quantum dynamics and classical chaos
    Garcia-Mata, Ignacio
    Pineda, Carlos
    Wisniacki, Diego
    PHYSICAL REVIEW A, 2012, 86 (02):
  • [34] Simulating Prethermalization Using Near-Term Quantum Computers
    Yang, Yilun
    Christianen, Arthur
    Coll-Vinent, Sandra
    Smelyanskiy, Vadim
    Banuls, Mari Carmen
    O'Brien, Thomas E.
    Wild, Dominik S.
    Cirac, J. Ignacio
    PRX QUANTUM, 2023, 4 (03):
  • [35] An ensemble variational quantum algorithm for non-Markovian quantum dynamics
    Walters, Peter L.
    Tsakanikas, Joachim
    Wang, Fei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (30) : 20500 - 20510
  • [36] Markovian and non-Markovian dynamics of quantum coherence in the extended XX chain
    Yin, Shaoying
    Liu, Shutian
    Song, Jie
    Luan, Hongliang
    PHYSICAL REVIEW A, 2022, 106 (03)
  • [37] OPTIC: A Practical Quantum Binary Classifier for Near-Term Quantum Computers
    Patel, Tirthak
    Silver, Daniel
    Tiwari, Devesh
    PROCEEDINGS OF THE 2022 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2022), 2022, : 334 - 339
  • [38] Embedding non-Markovian quantum collisional models into bipartite Markovian dynamics
    Budini, Adrian A.
    PHYSICAL REVIEW A, 2013, 88 (03):
  • [39] Non-Markovian quantum jumps from measurements in bipartite Markovian dynamics
    Budini, Adrian A.
    PHYSICAL REVIEW A, 2013, 88 (01):
  • [40] Markovian and Non-Markovian Quantum Measurements
    Jennifer R. Glick
    Christoph Adami
    Foundations of Physics, 2020, 50 : 1008 - 1055