The matrix Chern-Simons one-form as a Universal Chern-Simons theory

被引:13
|
作者
Nair, V. P. [1 ]
机构
[1] CUNY City Coll, Dept Phys, New York, NY 10031 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.nuclphysb.2006.06.002
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider different large N limits of the one-dimensional Chem-Simons action i integral dt Tr(partial derivative(0) + A(0)) where A(0) is an N x N anti-Hermitian matrix. The Hilbert space on which A(0) acts as a linear transformation is taken as the quantization of a 2k-dimensional phase space M with different gauge field backgrounds. For slowly varying fields, the large N limit of the one-dimensional CS action is equal to the (2k + I)dimensional CS theory on M x R. Different large M limits are parametrized by the gauge fields and the dimension 2k. The result is related to the bulk action for quantum Hall droplets in higher dimensions. Since the isometries of M are gauged, this has implications for gravity on fuzzy spaces. This is also briefly discussed. (c) 2006 Elsevier B.V. All fights reserved.
引用
收藏
页码:289 / 320
页数:32
相关论文
共 50 条
  • [31] RENORMALIZATION AMBIGUITIES IN CHERN-SIMONS THEORY
    ASOREY, M
    FALCETO, F
    LOPEZ, JL
    LUZON, G
    PHYSICAL REVIEW D, 1994, 49 (10): : 5377 - 5381
  • [32] The Chern-Simons coefficient in supersymmetric Yang-Mills Chern-Simons theories
    Kao, HC
    Lee, K
    Lee, T
    PHYSICS LETTERS B, 1996, 373 (1-3) : 94 - 99
  • [33] Refined En Chern-Simons theory
    Avetisyan, A. Y.
    Mkrtchyan, R. L.
    PHYSICS OF PARTICLES AND NUCLEI, 2023, 54 (06) : 1059 - 1062
  • [34] Chern-Simons theory and BCS superconductivity
    Asorey, M
    Falceto, F
    Sierra, G
    NUCLEAR PHYSICS B, 2002, 622 (03) : 593 - 614
  • [35] Domain walls in a Chern-Simons theory
    Torres, M
    SOLITONS: PROPERTIES, DYNAMICS, INTERACTIONS, APPLICATIONS, 2000, : 269 - 272
  • [36] STRING CONNECTIONS AND CHERN-SIMONS THEORY
    Waldorf, Konrad
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (08) : 4393 - 4432
  • [37] Localization in abelian Chern-Simons theory
    McLellan, B. D. K.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (02)
  • [38] Is quantum gravity a Chern-Simons theory?
    Bonezzi, R.
    Corradini, O.
    Waldron, A.
    PHYSICAL REVIEW D, 2014, 90 (08):
  • [39] Chern-Simons theory and knot invariants
    Pichai, Ramadevi
    Singh, Vivek Kumar
    PHYSICS AND MATHEMATICS OF LINK HOMOLOGY, 2016, 680 : 1 - 21
  • [40] Chern-Simons theory in aether superspace
    Ganai, Prince A.
    Mir, Mudasir Ahmad
    Rafiqi, Ideed
    Ul Islam, Nadeem
    MODERN PHYSICS LETTERS A, 2017, 32 (39)