Joint Resource and Trajectory Optimization for Security in UAV-Assisted MEC Systems

被引:131
|
作者
Xu, Yu [1 ]
Zhang, Tiankui [1 ]
Yang, Dingcheng [2 ]
Liu, Yuanwei [3 ]
Tao, Meixia [4 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
[2] Nanchang Univ, Informat Engn Sch, Nanchang 330031, Jiangxi, Peoples R China
[3] Queen Mary Univ London, Sch Elect Engn & Comp Sci, London E1 4NS, England
[4] Shanghai Jiao Tong Univ, Dept Elect Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Mobile edge computing; non-orthogonal multiple access; physical layer security; trajectory optimization; unmanned aerial vehicle;
D O I
10.1109/TCOMM.2020.3025910
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Unmanned aerial vehicle (UAV) has been widely applied in internet-of-things (IoT) scenarios while the security for UAV communications remains a challenging problem due to the broadcast nature of the line-of-sight (LoS) wireless channels. This article investigates the security problems for dual UAV-assisted mobile edge computing (MEC) systems, where one UAV is invoked to help the ground terminal devices (TDs) to compute the offloaded tasks and the other one acts as a jammer to suppress the vicious eavesdroppers. In our framework, minimum secure computing capacity maximization problems are proposed for both the time division multiple access (TDMA) scheme and non-orthogonal multiple access (NOMA) scheme by jointly optimizing the communication resources, computation resources, and UAVs' trajectories. The formulated problems are non-trivial and challenging to be solved due to the highly coupled variables. To tackle these problems, we first transform them into more tractable ones then a block coordinate descent based algorithm and a penalized block coordinate descent based algorithm are proposed to solve the problems for TDMA and NOMA schemes, respectively. Finally, numerical results show that the security computing capacity performance of the systems is enhanced by the proposed algorithms as compared with the benchmarks. Meanwhile, the NOMA scheme is superior to the TDMA scheme for security improvement.
引用
收藏
页码:573 / 588
页数:16
相关论文
共 50 条
  • [11] Joint Energy and AoI Optimization in UAV-Assisted MEC-WET Systems
    Yang, Yulu
    Song, Tiecheng
    Yang, Jingce
    Xu, Han
    Xing, Song
    IEEE SENSORS JOURNAL, 2024, 24 (09) : 15110 - 15124
  • [12] Resource Allocation and Trajectory Design for MISO UAV-Assisted MEC Networks
    Liu, Boyang
    Wan, Yiyao
    Zhou, Fuhui
    Wu, Qihui
    Hu, Rose Qingyang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (05) : 4933 - 4948
  • [13] A Spiking Reinforcement Trajectory Planning for UAV-Assisted MEC Systems
    Xia, Zeyang
    Dong, Li
    Jiang, Feibo
    IEEE ACCESS, 2024, 12 : 54435 - 54448
  • [14] Distributed Optimization of Multi-Role UAV Functionality Switching and Trajectory for Security Task Offloading in UAV-Assisted MEC
    Zhong, Liang
    Liu, Yuyang
    Deng, Xianjun
    Wu, Celimuge
    Liu, Shenghao
    Yang, Laurence T.
    IEEE Transactions on Vehicular Technology, 2024, 73 (12): : 19432 - 19447
  • [15] UAV-assisted wireless powered Internet of Things: Joint trajectory optimization and resource allocation
    Na, Zhenyu
    Zhang, Mengshu
    Wang, Jun
    Gao, Zihe
    AD HOC NETWORKS, 2020, 98
  • [16] Distributed Optimization of Multi-Role UAV Functionality Switching and Trajectory for Security Task Offloading in UAV-Assisted MEC
    Zhong, Liang
    Liu, Yuyang
    Deng, Xianjun
    Wu, Celimuge
    Liu, Shenghao
    Yang, Laurence T.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (12) : 19432 - 19447
  • [17] Joint Optimization of Resource Allocation and Trajectory Based on User Trajectory for UAV-Assisted Backscatter Communication System
    Xie, Peizhong
    Jiang, Junjie
    Li, Ting
    Lu, Yin
    CHINA COMMUNICATIONS, 2024, 21 (02) : 197 - 209
  • [18] Joint Optimization of Resource Allocation and Trajectory Based on User Trajectory for UAV-Assisted Backscatter Communication System
    Peizhong Xie
    Junjie Jiang
    Ting Li
    Yin Lu
    ChinaCommunications, 2024, 21 (02) : 197 - 209
  • [19] Trajectory optimization and resource allocation for UAV-assisted relaying communications
    Bin Liu
    Qi Zhu
    Hongbo Zhu
    Wireless Networks, 2020, 26 : 739 - 749
  • [20] Joint Resource Allocation and Trajectory Design for UAV-assisted Mobile Edge Computing Systems
    Ji, Jiequ
    Zhu, Kun
    Yi, Changyan
    Wang, Ran
    Niyato, Dusit
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,