THE LOCAL-GLOBAL PRINCIPLE FOR INTEGRAL SODDY SPHERE PACKINGS

被引:2
|
作者
Kontorovich, Alex [1 ]
机构
[1] Rutgers State Univ, Dept Math, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
关键词
Sphere packings; thin groups; hyperbolic geometry; arithmetic groups; quadratic forms; local-global principle; APOLLONIAN CIRCLE PACKINGS; GEOMETRY;
D O I
10.3934/jmd.2019019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fix an integral Soddy sphere packing P. Let B be the set of all bends in P. A number n is called represented if n is an element of B, that is, if there is a sphere in P with bend equal to n. A number n is called admissible if it is everywhere locally represented, meaning that n is an element of B(mod q) for all q. It is shown that every sufficiently large admissible number is represented.
引用
收藏
页码:209 / 236
页数:28
相关论文
共 50 条
  • [31] Local-global principle for congruence subgroups of Chevalley groups
    Apte, Himanee
    Stepanov, Alexei
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (06): : 801 - 812
  • [32] Hidden construction in abstract algebra:: The local-global principle
    Lombardi, H
    Quitté, C
    COMMUTATIVE RING THEORY AND APPLICATIONS, 2003, 231 : 461 - 476
  • [33] A LOCAL-GLOBAL PRINCIPLE FOR SYMPLECTIC K2
    Lavrenov, Andrei
    DOCUMENTA MATHEMATICA, 2018, 23 : 653 - 675
  • [34] On a local-global principle for quadratic twists of abelian varieties
    Francesc Fité
    Mathematische Annalen, 2024, 388 : 769 - 794
  • [35] Local-global principle for certain biquadratic normic bundles
    Cao, Yang
    Liang, Yongqi
    ACTA ARITHMETICA, 2014, 164 (02) : 137 - 144
  • [36] A new local-global principle for quadratic functional fields
    V. V. Benyash-Krivets
    V. P. Platonov
    Doklady Mathematics, 2010, 82 : 531 - 534
  • [37] On genus one curves violating the local-global principle
    Wu, Han
    JOURNAL OF NUMBER THEORY, 2023, 242 : 235 - 243
  • [38] On a probabilistic local-global principle for torsion on elliptic curves
    Cullinan, John
    Kenney, Meagan
    Voight, John
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2022, 34 (01): : 41 - 90
  • [39] Tetrahedral elliptic curves and the local-global principle for isogenies
    Banwait, Barinder S.
    Cremona, John E.
    ALGEBRA & NUMBER THEORY, 2014, 8 (05) : 1201 - 1229
  • [40] On a local-global principle for quadratic twists of abelian varieties
    Fite, Francesc
    MATHEMATISCHE ANNALEN, 2024, 388 (01) : 769 - 794