Portfolio selection with parameter uncertainty under α maxmin mean-variance criterion

被引:4
|
作者
Yu, Xingying [1 ]
Shen, Yang [2 ]
Li, Xiang [3 ]
Fan, Kun [4 ]
机构
[1] London Sch Econ & Polit Sci, Dept Math, London WC2A 2AE, England
[2] Univ New South Wales, Sch Risk & Actuarial Studies, Sydney, NSW 2052, Australia
[3] York Univ, Dept Math & Stat, Toronto, ON M3P 1P3, Canada
[4] East China Normal Univ, Sch Stat, Key Lab Adv Theory & Applicat Stat & Data Sci MOE, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Portfolio selection; Uncertainty; Ambiguity seeking; Ambiguity aversion; Quasi-efficient frontier; EXPECTED UTILITY; AMBIGUITY;
D O I
10.1016/j.orl.2020.08.008
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider a mean-variance portfolio selection problem with uncertain model parameters. We formulate the mean-variance problem under the alpha maxmin criterion, in which the investor has mixed ambiguity aversion and ambiguity seeking attitudes and solves a convex combination of max-min and max-max optimization problems. By the Lagrangian method, we obtain the efficient portfolio and quasi-efficient frontier in closed form. We provide comparative statics of the quasi-efficient frontier to various parameters. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:720 / 724
页数:5
相关论文
共 50 条
  • [31] Portfolio selection under possibilistic mean-variance utility and a SMO algorithm
    Zhang, Wei-Guo
    Zhang, Xi-Li
    Xiao, Wei-Lin
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 197 (02) : 693 - 700
  • [32] Mean-variance portfolio selection with regime switching under shorting prohibition
    Zhang, Miao
    Chen, Ping
    OPERATIONS RESEARCH LETTERS, 2016, 44 (05) : 658 - 662
  • [33] Continuous-time mean-variance portfolio selection under inflation
    Yao, H.-X. (yaohaixiang@mail.gdufs.edu.cn), 1600, Northeast University (28):
  • [34] Mean-variance portfolio optimization with parameter sensitivity control
    Cui, Xueting
    Zhu, Shushang
    Li, Duan
    Sun, Jie
    OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (04): : 755 - 774
  • [35] Mean-Variance Portfolio Selection with Tracking Error Penalization
    Lefebvre, William
    Loeper, Gregoire
    Pham, Huyen
    MATHEMATICS, 2020, 8 (11) : 1 - 23
  • [36] MEAN-VARIANCE PORTFOLIO SELECTION WITH RANDOM INVESTMENT HORIZON
    Liu, Jingzhen
    Yiu, Ka-Fai Cedric
    Li, Xun
    Siu, Tak Kuen
    Teo, Kok Lay
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (07) : 4726 - 4739
  • [37] Dynamic mean-variance portfolio selection with borrowing constraint
    Fu, Chenpeng
    Lari-Lavassani, Ali
    Li, Xun
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 200 (01) : 312 - 319
  • [38] Tail mean-variance portfolio selection with estimation risk
    Huang, Zhenzhen
    Wei, Pengyu
    Weng, Chengguo
    INSURANCE MATHEMATICS & ECONOMICS, 2024, 116 : 218 - 234
  • [39] Minimax mean-variance models for fuzzy portfolio selection
    Huang, Xiaoxia
    SOFT COMPUTING, 2011, 15 (02) : 251 - 260
  • [40] Minimax mean-variance models for fuzzy portfolio selection
    Xiaoxia Huang
    Soft Computing, 2011, 15 : 251 - 260