Biembedding a Steiner Triple System With a Hamilton Cycle Decomposition of a Complete Graph

被引:6
|
作者
McCourt, Thomas A. [1 ]
机构
[1] Univ Bristol, Dept Math, Heilbronn Inst Math Res, Bristol BS8 1TW, Avon, England
关键词
biembedding; nonorientable surface; Steiner triple system; hamilton cycle decomposition; current graph; EMBEDDINGS; GENUS;
D O I
10.1002/jgt.21774
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a face two-colourable, blue and green say, embedding of the complete graph K-n in a nonorientable surface in which there are (n - 1)/2 blue faces each of which have a hamilton cycle as their facial walk and n(n - 1)/6 green faces each of which have a triangle as their facial walk; equivalently a biembedding of a Steiner triple system of order n with a hamilton cycle decomposition of K-n, for all n equivalent to 3 (mod 36) and n not equal 3. Using a variant of this construction, we establish the minimum genus of nonorientable embeddings of the graph K36k+3 + (K-m) over bar, for m = 18k + 1 + 6s where k >= 1 and 0 <= s <= k - 1. (C) 2013 Wiley Periodicals, Inc.
引用
收藏
页码:68 / 87
页数:20
相关论文
共 50 条
  • [21] Cycle systems of the line graph of the complete graph
    Cox, BA
    Rodger, CA
    JOURNAL OF GRAPH THEORY, 1996, 21 (02) : 173 - 182
  • [22] SYMMETRIC HAMILTON CYCLE DECOMPOSITIONS OF COMPLETE MULTIGRAPHS
    Chitra, V.
    Muthusamy, A.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (04) : 695 - 707
  • [23] HOMOMORPHISMS OF PARTIAL AND OF COMPLETE STEINER TRIPLE-SYSTEMS AND QUASIGROUPS
    PIGOZZI, D
    SICHLER, J
    LECTURE NOTES IN MATHEMATICS, 1985, 1149 : 224 - 237
  • [24] Another complete invariant for Steiner triple systems of order 15
    Anglada, O
    Maurras, JF
    JOURNAL OF COMBINATORIAL DESIGNS, 2005, 13 (05) : 388 - 391
  • [25] Binomial partial Steiner triple systems containing complete graphs
    Prazmowska, Malgorzata
    Prazmowski, Krzysztof
    GRAPHS AND COMBINATORICS, 2016, 32 (05) : 2079 - 2092
  • [26] Binomial partial Steiner triple systems containing complete graphs
    Małgorzata Prażmowska
    Krzysztof Prażmowski
    Graphs and Combinatorics, 2016, 32 : 2079 - 2092
  • [27] HAMILTON SURFACES FOR THE COMPLETE EVEN SYMMETRIC BIPARTITE GRAPH
    HARTSFIELD, N
    JACKSON, B
    RINGEL, G
    DISCRETE MATHEMATICS, 1989, 78 (1-2) : 89 - 94
  • [28] Cyclic Near-Hamiltonian Cycle Decomposition of 2-Fold Complete Graph
    Aldiabat, Raja'i
    Ibrahim, Haslinda
    Karim, Sharmila
    4TH INNOVATION AND ANALYTICS CONFERENCE & EXHIBITION (IACE 2019), 2019, 2138
  • [29] ON PLANAR DECOMPOSITION OF A COMPLETE BIPARTITE GRAPH
    SHIRAKAW.I
    TAKAHASH.H
    OZAKI, H
    ELECTRONICS & COMMUNICATIONS IN JAPAN, 1967, 50 (10): : 288 - &
  • [30] ON DECOMPOSITION OF A COMPLETE GRAPH INTO PLANAR SUBGRAPHS
    SHIRAKAWA, I
    TAKAHASH.H
    OZAKI, H
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1967, 283 (05): : 379 - +