Biembedding a Steiner Triple System With a Hamilton Cycle Decomposition of a Complete Graph

被引:6
|
作者
McCourt, Thomas A. [1 ]
机构
[1] Univ Bristol, Dept Math, Heilbronn Inst Math Res, Bristol BS8 1TW, Avon, England
关键词
biembedding; nonorientable surface; Steiner triple system; hamilton cycle decomposition; current graph; EMBEDDINGS; GENUS;
D O I
10.1002/jgt.21774
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a face two-colourable, blue and green say, embedding of the complete graph K-n in a nonorientable surface in which there are (n - 1)/2 blue faces each of which have a hamilton cycle as their facial walk and n(n - 1)/6 green faces each of which have a triangle as their facial walk; equivalently a biembedding of a Steiner triple system of order n with a hamilton cycle decomposition of K-n, for all n equivalent to 3 (mod 36) and n not equal 3. Using a variant of this construction, we establish the minimum genus of nonorientable embeddings of the graph K36k+3 + (K-m) over bar, for m = 18k + 1 + 6s where k >= 1 and 0 <= s <= k - 1. (C) 2013 Wiley Periodicals, Inc.
引用
收藏
页码:68 / 87
页数:20
相关论文
共 50 条
  • [1] Biembedding Steiner Triple Systems in Surfaces Using the Bose Construction
    Griggs, T. S.
    Psomas, C.
    Siran, J.
    JOURNAL OF COMBINATORIAL DESIGNS, 2015, 23 (03) : 91 - 100
  • [2] Symmetric Hamilton cycle decompositions of the complete graph
    Akiyama, J
    Kobayashi, M
    Nakamura, G
    JOURNAL OF COMBINATORIAL DESIGNS, 2004, 12 (01) : 39 - 45
  • [3] The Cycle Switching Graph of the Steiner Triple Systems of Order 19 is Connected
    Petteri Kaski
    Veli Mäkinen
    Patric R. J. Östergård
    Graphs and Combinatorics, 2011, 27 : 539 - 546
  • [4] The Cycle Switching Graph of the Steiner Triple Systems of Order 19 is Connected
    Kaski, Petteri
    Makinen, Veli
    Ostergard, Patric R. J.
    GRAPHS AND COMBINATORICS, 2011, 27 (04) : 539 - 546
  • [5] Converting a 6-cycle system into a Steiner triple system
    Lindner, Charles C.
    Meszka, Mariusz
    Rosa, Alexander
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2018, 71 : 394 - 402
  • [6] Complete arcs in Steiner triple systems
    Colbourn, CJ
    Dinitz, JH
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 80 (02) : 320 - 333
  • [7] Eulerian Cycle Decomposition Conjecture for the line graph of complete graphs
    Rajarajachozhan, R.
    Sampathkumar, R.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2019, 16 (02) : 158 - 162
  • [8] A note on Hamilton l-cycle decomposition of complete k-partite hypergraphs
    Jiang, Taijiang
    Cai, Hongyan
    Sun, Qiang
    Zhang, Chao
    DISCRETE APPLIED MATHEMATICS, 2024, 359 : 214 - 219
  • [9] Hamilton cycle decomposition of the butterfly network
    INRIA Sophia Antipolls, Sophia Antipolls, France
    Parallel Process Lett, 3 (371-385):
  • [10] Hamilton decompositions of block-intersection graphs of Steiner triple systems
    Pike, DA
    ARS COMBINATORIA, 1999, 51 : 143 - 148