Normalized LDA for Semi-supervised Learning

被引:0
|
作者
Fan, Bin [1 ]
Lei, Zhen
Li, Stan Z.
机构
[1] Chinese Acad Sci, Inst Automat, Ctr Biometr & Secur Res, 95 Zhongguancun Donglu, Beijing 100190, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Linear Discriminant Analysis (LDA) has been a popular method for feature extracting and face recognition. As a supervised method, it requires manually labeled samples for training, while making labeled samples is a time consuming and exhausting work. A semi-supervised LDA (SDA [3]) has been proposed recently to enable training of LDA with partially labeled samples. In this paper we first reformulate supervised LDA based on the normalized perspective of LDA. Then we show that such a reformulation is powerful for semi-supervised learning of LDA. We call this approach Normalized LDA, which uses total diversity to normalize intra-class diversity and aims to find projection directions that minimize normalized intra-class diversity. Although the Normalized LDA is identical to LDA in the supervised situation, a semi-supervised approach can be easily incorporated into its framework to make use of unlabeled samples to improve the performance in the learned subspace. Moreover different with SDA which uses unlabeled samples to preserve neighboring relations, unlabeled samples in the Normalized LDA are used for a more accurate estimation of data space. Experiments of face recognition on the FRGC version 2 database and CMU PIE database demonstrate that the Normalized LDA outperforms SDA.
引用
收藏
页码:416 / +
页数:2
相关论文
共 50 条
  • [31] Semi-Supervised Learning via Regularized Boosting Working on Multiple Semi-Supervised Assumptions
    Chen, Ke
    Wang, Shihai
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (01) : 129 - 143
  • [32] Semi-supervised Neighborhood Preserving Discriminant Embedding: A Semi-supervised Subspace Learning Algorithm
    Mehdizadeh, Maryam
    MacNish, Cara
    Khan, R. Nazim
    Bennamoun, Mohammed
    COMPUTER VISION - ACCV 2010, PT III, 2011, 6494 : 199 - +
  • [33] Semi-supervised metric learning via topology preserving multiple semi-supervised assumptions
    Wang, Qianying
    Yuen, Pong C.
    Feng, Guocan
    PATTERN RECOGNITION, 2013, 46 (09) : 2576 - 2587
  • [34] Efficiently Learning the Graph for Semi-supervised Learning
    Sharma, Dravyansh
    Jones, Maxwell
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 1900 - 1910
  • [35] Adaptive Active Learning for Semi-supervised Learning
    Li Y.-C.
    Xiao F.
    Chen Z.
    Li B.
    Ruan Jian Xue Bao/Journal of Software, 2020, 31 (12): : 3808 - 3822
  • [36] POSITIVE UNLABELED LEARNING BY SEMI-SUPERVISED LEARNING
    Wang, Zhuowei
    Jiang, Jing
    Long, Guodong
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 2976 - 2980
  • [37] Broad learning system for semi-supervised learning
    Liu, Zheng
    Huang, Shiluo
    Jin, Wei
    Mu, Ying
    NEUROCOMPUTING, 2021, 444 (444) : 38 - 47
  • [38] Building Normalized SentiMI to enhance semi-supervised sentiment analysis
    Khan, Farhan Hassan
    Qamar, Usman
    Bashir, Saba
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 29 (05) : 1805 - 1816
  • [39] SolidBin: improving metagenome binning with semi-supervised normalized cut
    Wang, Ziye
    Wang, Zhengyang
    Lu, Yang Young
    Sun, Fengzhu
    Zhu, Shanfeng
    BIOINFORMATICS, 2019, 35 (21) : 4229 - 4238
  • [40] Semi-supervised Learning with Multimodal Perturbation
    Su, Lei
    Liao, Hongzhi
    Yu, Zhengtao
    Tang, Jiahua
    ADVANCES IN NEURAL NETWORKS - ISNN 2009, PT 1, PROCEEDINGS, 2009, 5551 : 651 - +