Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on supported Au and Pd bimetallic nanoparticles

被引:261
|
作者
Chadderdon, David J. [1 ]
Xin, Le [1 ]
Qi, Ji [1 ]
Qiu, Yang [1 ]
Krishna, Phani [1 ]
More, Karren L. [2 ]
Li, Wenzhen [1 ]
机构
[1] Michigan Technol Univ, Dept Chem Engn, Houghton, MI 49931 USA
[2] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
MEMBRANE FUEL-CELLS; SOLVENT-FREE OXIDATION; SELECTIVE OXIDATION; AEROBIC OXIDATION; PHASE OXIDATION; ANODE CATALYSTS; GLYCEROL; BIOMASS; GOLD; CHEMICALS;
D O I
10.1039/c4gc00401a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work explores the potential-dependent electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) in alkaline media over supported Au and Pd nanoparticies and demonstrates the synergistic effects of bimetallic Pd-Au catalysts for the selective formation of 2,5-furandicarboxylic acid (FDCA). Results from electrolysis product analysis at various electrode potentials, along with cyclic voltammetry of HMF and its oxidation intermediates, revealed the unique catalytic properties of Pd and Au for competitive oxidation of alcohol and aldehyde side-groups present in HMF. Aldehyde oxidation was greatly favored over alcohol oxidation on the Au/C catalyst, which was very active for HMF oxidation to 5-hydroxymethy1-2-furancarboxylic acid (HFCA), however high electrode potentials were required for further oxidation of the alcohol group to FDCA. HMF oxidation on Pd/C followed two competitive routes to FDCA and the pathway was dependent on the electrode potential. Oxidation of aldehyde groups occurred much slower on Pd/C than on Au/C at low potentials, but was greatly enhanced at increased potentials or by alloying with Au. It was found that Pd-Au bimetallic catalysts achieved deeply oxidized products (FFCA and FDCA) at lower potentials than monometallic catalysts and the product distribution was dependent on the electrode potential and surface alloy composition. Bimetallic catalysts with 2 :1 and 1: 2 Pd-Au molar ratios (Pd2Au1/C and Pd1Au2/C) exhibited advantages of both single components with facile alcohol and aldehyde group oxidation, resulting in greatly improved HMF conversion rate and selectivity to fully oxidized FDCA.
引用
收藏
页码:3778 / 3786
页数:9
相关论文
共 50 条
  • [31] Au-Based Bimetallic Catalysts for Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid under Base-Free Reaction Conditions
    Su, Juan
    Liu, Zongyang
    Tan, Yuan
    Xiao, Yan
    Zhan, Nannan
    Ding, Yunjie
    MOLECULES, 2024, 29 (12):
  • [32] Base-free oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over palygorskite-supported bimetallic Pt-Pd catalyst
    Zhong, Xuemin
    Wei, Yanfu
    Sadjadi, Samahe
    Liu, Dong
    Li, Mengyuan
    Yu, Ting
    Zhuang, Guanzheng
    Yuan, Peng
    APPLIED CLAY SCIENCE, 2022, 226
  • [33] Simulation and economic analysis of 5-hydroxymethylfurfural conversion to 2,5-furandicarboxylic acid
    Triebl, Christoph
    Nikolakis, Vladimiros
    Ierapetritou, Marianthi
    COMPUTERS & CHEMICAL ENGINEERING, 2013, 52 : 26 - 34
  • [34] Current Advances in the Sustainable Conversion of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid
    Totaro, Grazia
    Sisti, Laura
    Marchese, Paola
    Colonna, Martino
    Romano, Angela
    Gioia, Claudio
    Vannini, Micaela
    Celli, Annamaria
    CHEMSUSCHEM, 2022, 15 (13)
  • [35] Deep eutectic solvent stabilised Co-P films for electrocatalytic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid
    Kang, Myung Jong
    Yu, Hye Jin
    Kim, Hyun Sung
    Cha, Hyun Gil
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (33) : 14239 - 14245
  • [36] Selective aerobic oxidation of the 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over gold nanoparticles supported on graphitized carbon: Study on reaction pathways
    Sang, Baole
    Li, Jiang
    Tian, Xiqiang
    Yuan, Fulong
    Zhu, Yujun
    MOLECULAR CATALYSIS, 2019, 470 : 67 - 74
  • [37] Facile Production of 2,5-Furandicarboxylic Acid via Oxidation of Industrially Sourced Crude 5-Hydroxymethylfurfural
    Zuo, Xiaobin
    Venkitasubramanian, Padmesh
    Martin, Kevin J.
    Subramaniam, Bala
    CHEMSUSCHEM, 2022, 15 (13)
  • [38] Advances in the Energy-Saving Electro-Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Ren, Yujie
    Fan, Shilin
    Yu, Xiao
    Shi, Shaoqi
    Wang, Jinggang
    Zeng, Jia
    Zhang, Jian
    Chen, Chunlin
    ADVANCED SUSTAINABLE SYSTEMS, 2025,
  • [39] Kinetics of homogeneous 5-hydroxymethylfurfural oxidation to 2,5-furandicarboxylic acid with Co/Mn/Br catalyst
    Zuo, Xiaobin
    Chaudhari, Amit S.
    Snavely, Kirk
    Niu, Fenghui
    Zhu, Hongda
    Martin, Kevin J.
    Subramaniam, Bala
    AICHE JOURNAL, 2017, 63 (01) : 162 - 171
  • [40] Highly Efficient Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid with Heteropoly Acids and Ionic Liquids
    Chen, Ruru
    Xin, Jiayu
    Yan, Dongxia
    Dong, Huixian
    Lu, Xingmei
    Zhang, Suojiang
    CHEMSUSCHEM, 2019, 12 (12) : 2715 - 2724