EIGENVALUES FOR THE ROBIN LAPLACIAN IN DOMAINS WITH VARIABLE CURVATURE

被引:25
|
作者
Helffer, Bernard [1 ,2 ]
Kachmar, Ayman [3 ]
机构
[1] Univ Paris Sud, Bat 425, F-91405 Orsay, France
[2] Univ Nantes, Lab Jean Leray, F-44300 Nantes, France
[3] Lebanese Univ, Dept Math, Hadath, Lebanon
关键词
PRINCIPAL EIGENVALUE; ASYMPTOTICS;
D O I
10.1090/tran/6743
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine accurate asymptotics for the low-lying eigenvalues of the Robin Laplacian when the Robin parameter goes to -infinity. The two first terms in the expansion have been obtained by K. Pankrashkin in the 2D-case and by K. Pankrashkin and N. Popoff in higher dimensions. The asymptotics display the influence of the curvature and the splitting between every two consecutive eigenvalues. The analysis is based on the approach developed by Fournais-Helffer for the semi-classical magnetic Laplacian. We also propose a WKB construction as candidate for the ground state energy.
引用
收藏
页码:3253 / 3287
页数:35
相关论文
共 50 条
  • [21] Plummeting and blinking eigenvalues of the Robin Laplacian in a cuspidal domain
    Nazarov, Sergei A.
    Popoff, Nicolas
    Taskinen, Jari
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (06) : 2871 - 2893
  • [22] EFFECTIVE OPERATORS FOR ROBIN EIGENVALUES IN DOMAINS WITH CORNERS
    Khalile, Magda
    Ourmieres-Bonafos, Thomas
    Pankrashkin, Konstantin
    ANNALES DE L INSTITUT FOURIER, 2020, 70 (05) : 2215 - 2301
  • [23] Generalized nonlocal Robin Laplacian on arbitrary domains
    Nouhayla Ait Oussaid
    Khalid Akhlil
    Sultana Ben Aadi
    Mourad El Ouali
    Archiv der Mathematik, 2021, 117 : 675 - 686
  • [24] Tunneling for the Robin Laplacian in smooth planar domains
    Helffer, Bernard
    Kachmar, Ayman
    Raymond, Nicolas
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (01)
  • [25] The Robin-Laplacian problem on varying domains
    Bucur, Dorin
    Giacomini, Alessandro
    Trebeschi, Paola
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (06)
  • [26] ON THE NEGATIVE SPECTRUM OF THE ROBIN LAPLACIAN IN CORNER DOMAINS
    Bruneau, Vincent
    Popoff, Nicolas
    ANALYSIS & PDE, 2016, 9 (05): : 1259 - 1283
  • [27] Generalized nonlocal Robin Laplacian on arbitrary domains
    Oussaid, Nouhayla Ait
    Akhlil, Khalid
    Ben Aadi, Sultana
    El Ouali, Mourad
    ARCHIV DER MATHEMATIK, 2021, 117 (06) : 675 - 686
  • [28] The Laplacian with Robin Boundary Conditions on Arbitrary Domains
    Wolfgang Arendt
    Mahamadi Warma
    Potential Analysis, 2003, 19 : 341 - 363
  • [29] The Laplacian with Robin boundary conditions on arbitrary domains
    Arendt, W
    Warma, M
    POTENTIAL ANALYSIS, 2003, 19 (04) : 341 - 363