EIGENVALUES FOR THE ROBIN LAPLACIAN IN DOMAINS WITH VARIABLE CURVATURE

被引:25
|
作者
Helffer, Bernard [1 ,2 ]
Kachmar, Ayman [3 ]
机构
[1] Univ Paris Sud, Bat 425, F-91405 Orsay, France
[2] Univ Nantes, Lab Jean Leray, F-44300 Nantes, France
[3] Lebanese Univ, Dept Math, Hadath, Lebanon
关键词
PRINCIPAL EIGENVALUE; ASYMPTOTICS;
D O I
10.1090/tran/6743
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine accurate asymptotics for the low-lying eigenvalues of the Robin Laplacian when the Robin parameter goes to -infinity. The two first terms in the expansion have been obtained by K. Pankrashkin in the 2D-case and by K. Pankrashkin and N. Popoff in higher dimensions. The asymptotics display the influence of the curvature and the splitting between every two consecutive eigenvalues. The analysis is based on the approach developed by Fournais-Helffer for the semi-classical magnetic Laplacian. We also propose a WKB construction as candidate for the ground state energy.
引用
收藏
页码:3253 / 3287
页数:35
相关论文
共 50 条
  • [1] On the honeycomb conjecture for Robin Laplacian eigenvalues
    Bucur, Dorin
    Fragala, Ilaria
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (02)
  • [2] Optimal partitions for Robin Laplacian eigenvalues
    Bucur, Dorin
    Fragala, Ilaria
    Giacomini, Alessandro
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (05)
  • [3] On the eigenvalues of the Robin Laplacian with a complex parameter
    Sabine Bögli
    James B. Kennedy
    Robin Lang
    Analysis and Mathematical Physics, 2022, 12
  • [4] On the eigenvalues of the Robin Laplacian with a complex parameter
    Bogli, Sabine
    Kennedy, James B.
    Lang, Robin
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (01)
  • [5] Optimal partitions for Robin Laplacian eigenvalues
    Dorin Bucur
    Ilaria Fragalà
    Alessandro Giacomini
    Calculus of Variations and Partial Differential Equations, 2018, 57
  • [6] Robin eigenvalues on domains with peaks
    Kovarik, Hynek
    Pankrashkin, Konstantin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (03) : 1600 - 1630
  • [7] Eigenvalues of the Laplacian under singular variation of domains - The Robin problem with obstacle of general shape
    Ozawa, S
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1996, 72 (06) : 124 - 125
  • [8] ON THE ROBIN EIGENVALUES OF THE LAPLACIAN IN THE EXTERIOR OF A CONVEX POLYGON
    Pankrashkin, Konstantin
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2015, 6 (01): : 46 - 56
  • [9] Clusters of eigenvalues for the magnetic Laplacian with Robin condition
    Goffeng, Magnus
    Kachmar, Ayman
    Sundqvist, Mikael Persson
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (06)
  • [10] Concentration, Ricci Curvature, and Eigenvalues of Laplacian
    Funano, Kei
    Shioya, Takashi
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2013, 23 (03) : 888 - 936