Extended fractional Fourier transforms

被引:66
|
作者
Hua, JW
Liu, LR
Li, GQ
机构
[1] Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, East China Industrial Shipbuilding Institute, Shanghai, 201800
关键词
optical Fourier transform;
D O I
10.1364/JOSAA.14.003316
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The concept of an extended fractional Fourier transform (FRT) is suggested. Previous PBT's and complex FRT's are only its subclasses. Then, through this concept and its method, we explain the physical meaning of any optical Fresnel diffraction through a lens: It is just an extended FRT; a lens-cascaded system can equivalently be simplified to a simple analyzer of the FRT; the two-independent-parameter FRT of an object illuminated with a plane wave can be readily implemented by a lens of arbitrary focal length; when cascading, the Function of each lens unit and the relationship between the adjacent ones are clear and simple; and more parameters and fewer restrictions on cascading make the optical design easy. (C) 1997 Optical Society of America.
引用
收藏
页码:3316 / 3322
页数:7
相关论文
共 50 条
  • [21] Fractional Fourier Transforms and Geometrical Optics
    Moreno, Ignacio
    Ferreira, Carlos
    ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 161, 2010, 161 : 89 - 146
  • [22] Discrete fractional Hartley and Fourier transforms
    Pei, SC
    Tseng, CC
    Yeh, MH
    Shyu, JJ
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1998, 45 (06): : 665 - 675
  • [23] Fractional Fourier transforms of hypercomplex signals
    De Bie, Hendrik
    De Schepper, Nele
    SIGNAL IMAGE AND VIDEO PROCESSING, 2012, 6 (03) : 381 - 388
  • [24] Wavelet-fractional Fourier transforms
    Yuan Lin
    CHINESE PHYSICS B, 2008, 17 (01) : 170 - 179
  • [25] Fractional Fourier transforms in two dimensions
    Simon, R.
    Wolf, Kurt Bernardo
    2000, OSA - The Optical Society (17):
  • [26] Fractional fourier transforms and geometrical optics
    Moreno I.
    Ferreira C.
    Advances in Imaging and Electron Physics, 2010, 161 (0C) : 90 - 146
  • [27] A fast algorithm for fractional Fourier transforms
    Deng, XG
    Li, YP
    Fan, DY
    Qiu, Y
    OPTICS COMMUNICATIONS, 1997, 138 (4-6) : 270 - 274
  • [28] Fast algorithms for fractional Fourier transforms
    Creutzburg, R
    Rundblad, E
    Labunets, VG
    PROCEEDINGS OF THE IEEE-EURASIP WORKSHOP ON NONLINEAR SIGNAL AND IMAGE PROCESSING (NSIP'99), 1999, : 383 - 387
  • [29] Eigenfunctions of Fourier and fractional fourier transforms with complex offsets and parameters
    Pei, Soo-Chang
    Ding, Jian-Jiun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2007, 54 (07) : 1599 - 1611
  • [30] Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms
    Pei, SC
    Ding, JJ
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2003, 20 (03): : 522 - 532