Thermal conductivity reduction of crystalline silicon by high-pressure torsion

被引:24
|
作者
Harish, Sivasankaran [1 ]
Tabara, Mitsuru [1 ]
Ikoma, Yoshifumi [2 ]
Horita, Zenji [2 ,3 ]
Takata, Yasuyuki [1 ,3 ]
Cahill, David G. [3 ,4 ,5 ]
Kohno, Masamichi [1 ,3 ]
机构
[1] Kyushu Univ, Dept Mech Engn, Fukuoka 8190395, Japan
[2] Kyushu Univ, Dept Mat Sci & Engn, Fukuoka 8190395, Japan
[3] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Fukuoka 8190395, Japan
[4] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[5] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA
来源
关键词
Silicon thermal conductivity; High-pressure torsion; Time domain thermoreflectance; Thermoelectrics;
D O I
10.1186/1556-276X-9-326
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report a dramatic and irreversible reduction in the lattice thermal conductivity of bulk crystalline silicon when subjected to intense plastic strain under a pressure of 24 GPa using high-pressure torsion (HPT). Thermal conductivity of the HPT-processed samples were measured using picosecond time domain thermoreflectance. Thermal conductivity measurements show that the HPT-processed samples have a lattice thermal conductivity reduction by a factor of approximately 20 (from intrinsic single crystalline value of 142 Wm(-1) K-1 to approximately 7.6 Wm(-1) K-1). Thermal conductivity reduction in HPT-processed silicon is attributed to the formation of nanograin boundaries and metastable Si-III/XII phases which act as phonon scattering sites, and because of a large density of lattice defects introduced by HPT processing. Annealing the samples at 873 K increases the thermal conductivity due to the reduction in the density of secondary phases and lattice defects.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [41] HIGH-PRESSURE SUPERCONDUCTIVITY OF SILICON
    MIGNOT, JM
    CHOUTEAU, G
    MARTINEZ, G
    PHYSICA B & C, 1985, 135 (1-3): : 235 - 238
  • [42] PHASES OF SILICON AT HIGH-PRESSURE
    HU, JZ
    SPAIN, IL
    SOLID STATE COMMUNICATIONS, 1984, 51 (05) : 263 - 266
  • [43] Some Unresolved Problems of High-Pressure Torsion
    Beygelzimer, Yan
    Estrin, Yuri
    Kulagin, Roman
    MATERIALS TRANSACTIONS, 2023, 64 (08) : 1856 - 1865
  • [44] Amorphization of TiNi induced by high-pressure torsion
    Huang, JY
    Zhu, YT
    Liao, XZ
    Valiev, RZ
    PHILOSOPHICAL MAGAZINE LETTERS, 2004, 84 (03) : 183 - 190
  • [45] The dead metal zone in high-pressure torsion
    Lee, Dong Jun
    Yoon, Eun Yoo
    Park, Lee Ju
    Kim, Hyoung Seop
    SCRIPTA MATERIALIA, 2012, 67 (04) : 384 - 387
  • [46] High-pressure torsion using ring specimens
    Harai, Yosuke
    Ito, Yuki
    Horita, Zenji
    SCRIPTA MATERIALIA, 2008, 58 (06) : 469 - 472
  • [47] Continuous high-pressure torsion using wires
    Kaveh Edalati
    Seungwon Lee
    Zenji Horita
    Journal of Materials Science, 2012, 47 : 473 - 478
  • [48] Heterogeneous Flow During High-Pressure Torsion
    Figueiredo, Roberto B.
    Langdon, Terence G.
    MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2013, 16 (03): : 571 - 576
  • [49] Nanograin formation of GaAs by high-pressure torsion
    Ikoma, Yoshifumi (ikoma@zaiko.kyushu-u.ac.jp), 1600, Taylor and Francis Ltd. (94):
  • [50] The evolution of homogeneity in processing by high-pressure torsion
    Xu, Cheng
    Horita, Zenji
    Langdon, Terence G.
    ACTA MATERIALIA, 2007, 55 (01) : 203 - 212