Identification of Melanoma From Hyperspectral Pathology Image Using 3D Convolutional Networks

被引:68
|
作者
Wang, Qian [1 ]
Sun, Li [1 ]
Wang, Yan [1 ]
Zhou, Mei [1 ]
Hu, Menghan [1 ]
Chen, Jiangang [1 ]
Wen, Ying [1 ]
Li, Qingli [1 ]
机构
[1] East China Normal Univ, Shanghai Key Lab Multidimens Informat Proc, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
Pathology; Image segmentation; Three-dimensional displays; Two dimensional displays; Melanoma; Skin; Hyperspectral imaging; Microscopy; segmentation; skin; quantification and estimation; optical imaging; SKIN-LESION SEGMENTATION; CLASSIFICATION; CANCER;
D O I
10.1109/TMI.2020.3024923
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Skin biopsy histopathological analysis is one of the primary methods used for pathologists to assess the presence and deterioration of melanoma in clinical. A comprehensive and reliable pathological analysis is the result of correctly segmented melanoma and its interaction with benign tissues, and therefore providing accurate therapy. In this study, we applied the deep convolution network on the hyperspectral pathology images to perform the segmentation of melanoma. To make the best use of spectral properties of three dimensional hyperspectral data, we proposed a 3D fully convolutional network named Hyper-net to segment melanoma from hyperspectral pathology images. In order to enhance the sensitivity of the model, we made a specific modification to the loss function with caution of false negative in diagnosis. The performance of Hyper-net surpassed the 2D model with the accuracy over 92%. The false negative rate decreased by nearly 66% using Hyper-net with the modified loss function. These findings demonstrated the ability of the Hyper-net for assisting pathologists in diagnosis of melanoma based on hyperspectral pathology images.
引用
收藏
页码:218 / 227
页数:10
相关论文
共 50 条
  • [41] Violence Detection using 3D Convolutional Neural Networks
    Su, Jiayi
    Her, Paris
    Clemens, Erik
    Yaz, Edwin
    Schneider, Susan
    Medeiros, Henry
    2022 18TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS 2022), 2022,
  • [42] Video Steganography Using 3D Convolutional Neural Networks
    Abdolmohammadi, Mahdi
    Toroghi, Rahil Mahdian
    Bastanfard, Azam
    PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2020, 1144 : 149 - 161
  • [43] 3D Pose Regression using Convolutional Neural Networks
    Mahendran, Siddharth
    Ali, Haider
    Vidal, Rene
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 2174 - 2182
  • [44] Hyperspectral Target Detection-Based 2-D-3-D Parallel Convolutional Neural Networks for Hyperspectral Image Classification
    Chen, Shih-Yu
    Hsu, Kai-Hsun
    Kuo, Tzu-Hsien
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 9451 - 9469
  • [45] Multispectral and Hyperspectral Image Fusion Using a 3-D-Convolutional Neural Network
    Palsson, Frosti
    Sveinsson, Johannes R.
    Ulfarsson, Magnus O.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (05) : 639 - 643
  • [46] Multi-person 3D pose estimation from 3D cloud data using 3D convolutional neural networks
    Vasileiadis, Manolis
    Bouganis, Christos-Savvas
    Tzovaras, Dimitrios
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2019, 185 : 12 - 23
  • [47] Hyperspectral Image-Based Identification of Maritime Objects Using Convolutional Neural Networks and Classifier Models
    Seo, Dongmin
    Lee, Daekyeom
    Park, Sekil
    Oh, Sangwoo
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2025, 13 (01)
  • [48] Accelerating 3D Convolutional Neural Networks Using 3D Fast Fourier Transform
    Fang, Chao
    He, Liulu
    Wang, Haonan
    Wei, Jinghe
    Wang, Zhongfeng
    2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2021,
  • [49] 3D Object Classification using 3D Racah Moments Convolutional Neural Networks
    Mesbah, Abderrahim
    Berrahou, Aissam
    El Alami, Abdelmajid
    Berrahou, Nadia
    Berbia, Hassan
    Qjidaa, Hassan
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON NETWORKING, INFORMATION SYSTEMS & SECURITY (NISS19), 2019,
  • [50] MULTI-SCALE 3D DEEP CONVOLUTIONAL NEURAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    He, Mingyi
    Li, Bo
    Chen, Huahui
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3904 - 3908